B. E. C	COMMON TO ALL PROGRAM	MES	
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)			
COMPLEX ANALYSIS PROBABILITY AND STATISTICAL METHODS			
	(Common to all programmes)		00
[As per Ch	noice Based Credit System (CBCS)	scheme]	
Course Code	18MAT41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
• To provide an insight into appl arising in potential theory, qua	lications of complex variables, conf ntum mechanics, heat conduction an	ormal mapping and not field theory.	l special functions
• To develop probability distrib	oution of discrete, continuous ran	dom variables and	joint probability
distribution occurring in digita	l signal processing, design engineer	ing and microwave	engineering.
Module-1			
Calculus of complex functions: R	eview of function of a comple	x variable, limits	, continuity, and
differentiability. Analytic functions:	Cauchy-Riemann equations in	Cartesian and p	polar forms and
consequences.	Gina Thomson mathad Brahlams		
Construction of analytic functions: N Module-2	Inne-Thomson method-Froblems.		
Conformal transformations: Introduc	tion Discussion of transformation	$r_{\rm r} = 7^2 m - \rho^2$	$w = 7 \pm$
$\frac{1}{2}$ ($z \neq 0$) Bilinear transformations. Pr	oblems	5.W = 2, $W = e$,	w = z +
z , $(2 \neq 0)$. Diffical transformations into analog	is complex function Couchy's these	nom and Carabar's	:
complex integration: Line integral of	a complex function-Cauchy's theory	rem and Cauchy's	integral formula
Module-3		. 1 1 (1.)	1 ()
Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous),			
derivation for mean and standard devia	ation)-Illustrative examples	normal distributio	lis- problems (no
Module-4			
Statistical Methods: Correlation and r	egression-Karl Pearson's coefficien	t of correlation and	rank correlation
-problems. Regression analysis- lines of	of regression –problems.	a of conclution and	
Curve Fitting: Curve fitting by the me	thod of least squares- fitting the cu	rves of the form-	
$y = ax + b$, $y = ax^b$ and $y = ax^2 + b$	x + c.		
Module-5			
Joint probability distribution: Joint	Probability distribution for two dis	screte random varia	ables, expectation
and covariance.			, r
Sampling Theory: Introduction to san	npling distributions, standard error	, Type-I and Type-	II errors. Test of
hypothesis for means, student's t-dist	ribution, Chi-square distribution a	as a test of goodn	ess of fit.
Course Outcomes: At the end of the c	ourse the student will be able to:		
• Use the concepts of analytic electromagnetic field theory.	e function and complex potentials	s to solve the pro	oblems arising in
• Utilize conformal transformative visualization and image process	ation and complex integral arisi	ng in aerofoil th	eory, fluid flow
 Apply discrete and continuous 	probability distributions in analyzir	ng the probability m	odels arising in
engineering field.		6 r ower of h	
• Make use of the correlation and statistical data.	d regression analysis to fit a suitable	e mathematical mod	lel for the

• Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ks			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ce Books			
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
Web lin	ks and Video Lectures:			
 http://nptel.ac.in/courses.php?disciplineID=111 http://www.class-central.com/subject/math(MOOCs) http://academicearth.org/ VTU EDUSAT PROGRAMME - 20 				

DESIGN AND ANALYSIS OF ALGORITHMS			
(Effective from the academic year 2018 -2019) SEMESTER – IV			
Course Code	18CS42	CIE Marks	40
Number of Contact Hours/Week	3:2:0	SEE Marks	60
Total Number of Contact Hours	50	Exam Hours	03
	CREDITS –4		
Course Learning Objectives: This course	e (18CS42) will enable s	tudents to:	
Explain various computational pro	blem solving techniques	S.	
Apply appropriate method to solve	e a given problem.		
Describe various methods of algor	ithm analysis.		
Module 1			Contact Hours
Introduction: What is an Algorithm? (T Framework (T1:2.1), Performance Analy Asymptotic Notations: Big-Oh notation Little-oh notation (<i>o</i>), Mathematical ana with Examples (T1:2.2, 2.3, 2.4). Impor processing, Graph Problems, Combinate Stacks, Queues, Graphs, Trees, Sets and D RBT: L1, L2, L3	2:1.1), Algorithm Speci ysis: Space complexity, (<i>O</i>), Omega notation (<i>G</i> lysis of Non-Recursive rtant Problem Types: prial Problems. Funda victionaries. (T1:1.3,1.4)	fication (T2:1.2), Anal Time complexity (T2:1), Theta notation (<i>Θ</i>), and recursive Algorit Sorting, Searching, St mental Data Structu	ysis 10 I.3). and hms ring res:
Module 2			
Divide and Conquer : General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3).		and 10 sort s of	
Module 3			
Greedy Method: General method, C sequencing with deadlines (T2:4.1, 4.3 Algorithm, Kruskal's Algorithm (T1:9.1 Algorithm (T1:9.3). Optimal Tree p Transform and Conquer Approach: Hea RBT: L1, L2, L3	oin Change Problem, 5, 4.5). Minimum cost 1, 9.2). Single source roblem: Huffman Tre aps and Heap Sort (T1:6	Knapsack Problem, t spanning trees: Pri shortest paths: Dijks ees and Codes (T1:9 5.4).	Job 10 m's tra's 0.4).
Module 4			
Dynamic Programming: General method Transitive Closure: Warshall's Algorith Optimal Binary Search Trees, Knapsa Algorithm (T2:5.4), Travelling Sales Person RBT: L1, L2, L3	d with Examples, Multis nm, All Pairs Shortest ack problem ((T1:8.2 , on problem (T2:5.9), Re	stage Graphs (T2:5.1, 5 Paths: Floyd's Algorit 8.3, 8.4), Bellman-F cliability design (T2:5.8	5.2). 10 hm, ^R ord).
Module 5			
Backtracking: General method (T2:7.1 problem (T1:12.1), Graph coloring (T2:7 Bound: Assignment Problem, Travelling problem (T2:8.2, T1:12.2): LC Programmand Bound solution (T2:8.2). NP-Completion (T2:8.2).), N-Queens problem (4), Hamiltonian cycles Sales Person problem ne and Bound solution (ete and NP-Hard prob	T1:12.1), Sum of sub (T2:7.5). Programme (T1:12.2), 0/1 Knaps (T2:8.2), FIFO Program lems: Basic concepts, r	sets 10 and ack nme non-

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).
RBT: L1, L2, L3
Course Outcomes: The student will be able to :
• Describe computational solution to well known problems like searching, sorting etc.
• Estimate the computational complexity of different algorithms.
• Devise an algorithm using appropriate design strategies for problem solving.
Question Paper Pattern:
• The question paper will have ten questions.
• Each full Question consisting of 20 marks
• There will be 2 full questions (with a maximum of four sub questions) from each module.
• Each full question will have sub questions covering all the topics under a module.
• The students will have to answer 5 full questions, selecting one full question from each module.
Textbooks:
1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.
Pearson.
2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014,
Universities Press
Reference Books:
1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford
Stein, 3rd Edition, PHI.
2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).

OPERATING SYSTEMS			
(Effective from the academic year 2018 -2019)			
SEMESTER – IV			
Course Code	18CS43	CIE Marks	40
Number of Contact Hours/Week	3:0:0	SEE Marks	60
Total Number of Contact Hours	40	Exam Hours	03
	CREDITS	-3	
Course Learning Objectives: This cours	e (18CS43) will	enable students to:	
• Introduce concepts and terminolog	gy used in OS		
• Explain threading and multithread	led systems		
Illustrate process synchronization	and concept of	Deadlock	
Introduce Memory and Virtual me	emory managem	ent, File system and storage te	chniques
Module 1			Contact Hours
Introduction to operating systems, S Computer System organization; Computer Operating System operations; Process management; Protection and Security; Computing environments. Operating Sys System calls; Types of system calls; implementation; Operating System st generation; System boot. Process Ma Operations on processes; Inter process con Text book 1: Chapter 1, 2.1, 2.3, 2.4, 2.5 RBT: L1, L2, L3	ystem structur r System archite a management; Distributed as stem Services; System program ructure; Virtur magement Pro- mmunication 5, 2.6, 2.8, 2.9, 2	res: What operating system ecture; Operating System stru Memory management; St system; Special-purpose sys User - Operating System inte ns; Operating system design al machines; Operating Sy cess concept; Process schede .10, 3.1, 3.2, 3.3, 3.4	s do; 08 cture; orage tems; rface; a and ystem uling;
Module 2			
Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling. Process Synchronization: Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors. Text book 1: Chapter 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7		aries; 08 luling ation: zation	
Module 3			
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock. Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Text book 1: Chapter 7, 8.1 to 8.6 RBT: L1, L2, L3		dling 08 from pping;	
Module 4			
Virtual Memory Management: Back replacement; Allocation of frames; Th System: File system: File concept; A mounting; File sharing; Protection: Imp system implementation; Directory im management. Text book 1: Chapter 91. To 9.6, 10.1 to	ground; Dema rashing. File S ccess methods; lementing File plementation; 10.5	nd paging; Copy-on-write; System, Implementation of Directory structure; File sy system: File system structure Allocation methods; Free	Page 08 File ystem ; File space
RBT: L1, L2, L3			

Module	e 5			
Second	ary Storage Structures, Protection: Mass storage structures; Disk structure; Disk	08		
attachm	attachment; Disk scheduling; Disk management; Swap space management. Protection: Goals			
of prote	ection, Principles of protection, Domain of protection, Access matrix, Implementation			
of acce	ss matrix, Access control, Revocation of access rights, Capability- Based systems.			
Case S	Study: The Linux Operating System: Linux history; Design principles; Kernel			
module	s; Process management; Scheduling; Memory Management; File systems, Input and			
output;	Inter-process communication.			
Text bo	ook 1: Chapter 12.1 to 12.6, 21.1 to 21.9			
RBT: I	L1, L2, L3			
Course	• Outcomes: The student will be able to :			
•	Demonstrate need for OS and different types of OS			
•	Apply suitable techniques for management of different resources			
•	Use processor, memory, storage and file system commands			
•	• Realize the different concepts of OS in platform of usage through case studies			
Questio	on Paper Pattern:			
•	The question paper will have ten questions.			
•	Each full Question consisting of 20 marks			
•	There will be 2 full questions (with a maximum of four sub questions) from each modu	le.		
•	Each full question will have sub questions covering all the topics under a module.			
•	• The students will have to answer 5 full questions, selecting one full question from each module.			
Textbo	oks:			
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles	7 th edition,		
	Wiley-India, 2006			
Refere	nce Books:			
1.	Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th I	Edition		
2.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-H	Hill, 2013.		
3.	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition	l ,		
	PHI(EEE), 2014.			
4.	William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pea	rson.		

MICROCONTROLLER AND EMBEDDED SYSTEMS				
(Effective from the academic year 2018 - 2019)				
SEMESTER – IV				
Course Code	18CS44	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
	CREDITS -	-3		
Course Learning Objectives: This course	e (18CS44) will	enable students to:		
• Understand the fundamentals of A	RM based syste	ms, basic hardware components	, selection	
methods and attributes of an embe	edded system.			
• Program ARM controller using th	e various instruc	ctions		
• Identify the applicability of the er	nbedded system			
• Comprehend the real time operation	ng system used f	or the embedded system		
Module 1			Contact	
Miene and according to an interval	ADM Each adda	d Sustance The DISC design	Hours	
microprocessors versus Microcontrollers,	ARM Embedde	a Systems: The RISC design	08	
Software	, Embedded Sys	tem Hardware, Embedded Syste	.111	
ARM Processor Fundamentals: Registers	Current Program	n Status Register Pipeline		
Exceptions Interrupts and the Vector Tab	le Core Extens	ions		
Exceptions, interrupts, and the vector rat	ne, core Extens	ions		
Text book 1: Chapter 1 - 1.1 to 1.4, Cha	pter 2 - 2.1 to 2	.5		
RBT: L1, L2	-			
Module 2				
Introduction to the ARM Instruction Se	et: Data Process	ing Instructions, Programme	08	
Instructions, Software Interrupt Instruction	ns, Program Stat	us Register Instructions,		
Coprocessor Instructions, Loading Consta	nts			
	XX7 · · ·			
A KIVI programming using Assembly lan	iguage: Writing	Assembly code, Profiling and		
cycle counting, instruction scheduling, Register Allocation, Conditional Execution, Looping			ng	
Constructs				
Text book 1: Chapter 3:Sections 3.1 to	3.6 (Excluding	3.5.2). Chanter 6(Sections 6.	1 to	
6.6)		, cherry, chapter o(sections of		
RBT: L1. L2				
Module 3				
Embedded System Components: Embed	ded Vs General	computing system, History of	08	
embedded systems. Classification of Embe	edded systems. I	Major applications areas of		
embedded systems, purpose of embedded	systems	5 11		
Core of an Embedded System including a	ll types of proce	ssor/controller, Memory, Sensor	rs,	
Actuators, LED, 7 segment LED display, s	stepper motor, K	leyboard, Push button switch,		
Communication Interface (onboard and ex	tternal types), Ei	nbedded firmware, Other system	n	
components.				
Tavt book 2. Chapter 1 (Sections 1.2 to 1	6) Chantor 2(S	actions 2.1 to 2.6		
RRT: L1. L2	.0), Chapter 2(8			
Module 4				
Embedded System Design Concepts: Ch	aracteristics and	Quality Attributes of Embedde	d 08	
Systems, Operational quality attributes inc	on-operational of	ality attributes. Embedded		

Systems-Application and Domain specific, Hardware Software Co-Design and Program	1
Modelling embedded firmware design and development	-
indenning, embedded inini vale design and de verspinent	
Text book 2: Chapter-3, Chapter-4, Chapter-7 (Sections 7.1, 7.2 only), Chapter-9	
(Sections 9.1, 9.2, 9.3.1, 9.3.2 only)	
RBT: L1, L2	
Module 5	
RTOS and IDE for Embedded System Design: Operating System basics, Typ	pes of 08
operating systems, Task, process and threads (Only POSIX Threads with an ex	ample
program). Thread preemption, Multiprocessing and Multitasking, Task Communi	ication
(without any program). Task synchronization issues – Racing and Deadlock. Conc	cept of
Binary and counting semaphores (Mutex example without any program). How to cho	ose an
RTOS Integration and testing of Embedded hardware and firmware Embedded s	system
Development Environment – Block diagram (excluding Keil) Disassembler/decor	nniler
simulator emulator and debugging techniques, target hardware debugging boundary so	npher,
simulator, emulator and debugging teeninques, target hardware debugging, boundary se	<i>a</i>
Text book 2: Chapter-10 (Sections 10.1, 10.2, 10.3, 10.4, 10.7, 10.8.1.1, 10.8.1.2, 10	.8.2.2,
10.10 only), Chapter 12, Chapter-13 (block diagram before 13.1, 13.3, 13.4, 13.5	5, 13.6
only)	
RBT: L1, L2	
Course Outcomes: The student will be able to :	
• Describe the architectural features and instructions of ARM microcontroller	
• Apply the knowledge gained for Programming ARM for different applications.	
• Interface external devices and I/O with ARM microcontroller.	
• Interpret the basic hardware components and their selection method based on	the characteristics
and attributes of an embedded system.	
• Develop the hardware /software co-design and firmware design approaches.	
Demonstrate the need of real time operating system for embedded system appli	cations
Question Paper Pattern:	
• The question paper will have ten questions.	
• Each full Question consisting of 20 marks	
• There will be 2 full questions (with a maximum of four sub questions) from eac	ch module.
• Each full question will have sub questions covering all the topics under a modu	le.
The students will have to answer 5 full questions, selecting one full question from	om each module.
Textbooks:	
1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system develope	rs guide, Elsevier,
Morgan Kautman publishers, 2008.	
2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Educatio	n, Private Limited,
2 ^m Edition.	
Keterence Books:	<u> </u>
1. RaghunandanG.H, Microcontroller (ARM) and Embedded System, Q Publication,2019	Cengage learning
2. The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st editio	n, 2005.
3. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 20	15.
4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 200)8.

OBJECT ORIENTED CONCEPTS				
(Effective from the academic year 2018 -2019)				
SEMESTER – IV				
Course Code	18CS45	CIE Marks	40	
Number of Contact Hours/ week	3:0:0	SEE Marks	00	
Total Number of Contact Hours	CDEDIT	Exam Hours	05	
Course Learning Objectives. This course	$\frac{\mathbf{CREDII}}{\mathbf{e} (18CS(45))}$	5 – 5 ill enable students to:		
• Learn fundamental features of obj	c(10C343) w	in chable students to.		
Set up Java IDK environment to c	ect offenteu la	inguage and JAVA	2	
 Set up sava JDK environment to e Create multi-threaded programs and 	nd event hand	ling mechanisms	5.	
Introduce event driven Graphical	User Interface	(GUI) programming using a	unnlets and	swings
Module 1		(GOI) programming using a	ippiets and	Contact
Would I				Hours
Introduction to Object Oriented Conce	pts:			08
A Review of structures, Procedure-C	Driented Prog	ramming system, Object	Oriented	
Programming System, Comparison of C	Object Orient	ed Language with C, Con	sole I/O,	
variables and reference variables, Functi	on Prototypin	g, Function Overloading. C	class and	
Objects: Introduction, member functions	and data, obje	cts and functions.		
Text book 1: Ch 1: 1.1 to 1.9 Ch 2: 2.1	to 2.3			
RBT: L1, L2				
Module 2				
Class and Objects (contd):				08
Objects and arrays, Namespaces, Nested c	lasses, Constr	uctors, Destructors.		
Introduction to Java: Java's magic: the Byte code; Java Development Kit (JDK); the Java				
Buzzwords, Object-oriented programming; Simple Java programs. Data types, variables and				
arrays, Operators, Control Statements.				
Text book 1:Ch 2: 2.4 to 2.6Ch 4: 4.1 to 4.2				
Text book 2: Ch:1 Ch: 2 Ch:3 Ch:4 Ch:5				
RBT: L1, L2				
Module 3 Classes Inheritance Exception Handl	ling. Classes	Classes fundamentales 1	Daalamina	00
chasses, inneritance, Exception Hand	ing: Classes	. Classes fundamentals; I	beclaring	08
objects, Constructors, this keyword, gai	bage collecti	d avamiding Evention k	e dasics,	
Exagention handling in Java	archy, metho	a overhallig. Exception in	ianuning:	
Exception handling in Java.				
DRT. I 1 I 2 I 3				
Module 4				
Packages and Interfaces: Packages Acce	ss Protection	Importing Packages Interface		08
Multi Threaded Programming: Multi T	hreaded Prog	ramming: What are threads	? How to	00
make the classes threadable : Extending	threads: Impl	ementing runnable: Synchro	onization:	
Changing state of the thread: Bounded but	fer problems.	producer consumer problem	S.	
Text book 2: CH: 9 Ch 11:	- r,	r problem		
RBT: L1, L2, L3				
Module 5				
Event Handling: Two event handling	mechanisms;	The delegation event mode	el; Event	08
classes; Sources of events; Event listen	er interfaces;	Using the delegation ever	nt model;	
Adapter classes; Inner classes.				

Swings: Swings: The origins of Swing; Two key Swing features; Components and Containers; The Swing Packages; A simple Swing Application; Create a Swing Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons; JTabbedpane; JScrollPane; JList; JComboBox; JTable.

Text book 2: Ch 22: Ch: 29 Ch: 30 RBT: L1, L2, L3

Course Outcomes: The student will be able to :

- Explain the object-oriented concepts and JAVA.
- Develop computer programs to solve real world problems in Java.
- Develop simple GUI interfaces for a computer program to interact with users, and to understand the event-based GUI handling principles using swings.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

• The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Sourav Sahay, Object Oriented Programming with C++, 2nd Ed, Oxford University Press, 2006
- 2. Herbert Schildt, Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007.

Reference Books:

- 1. Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson Education, 2008, ISBN:9788131720806
- 2. Herbert Schildt, The Complete Reference C++, 4th Edition, Tata McGraw Hill, 2003.
- 3. Stanley B.Lippmann, Josee Lajore, C++ Primer, 4th Edition, Pearson Education, 2005.
- 4. Rajkumar Buyya,S Thamarasi selvi, xingchen chu, Object oriented Programming with java, Tata McGraw Hill education private limited.
- 5. Richard A Johnson, Introduction to Java Programming and OOAD, CENGAGE Learning.
- 6. E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.

Mandatory Note: Every institute shall organize bridge course on C++, either in the vacation or in the beginning of even semester for a minimum period of ten days (2hrs/day). Maintain a copy of the report for verification during LIC visit.

Faculty can utilize open source tools to make teaching and learning more interactive.

DATA COMMUNICATION				
(Effective from the academic year 2018 - 2019)				
SEMESTER – IV				
Course Code	18CS46	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
I otal Number of Contact Hours		Exam Hours	03	
Course Learning Objectives: This course	$\frac{\mathbf{CREDITS}}{(18CS46)}$ wi) – J Il anghla students to:		
• Comprehend the transmission tech	$\frac{1000340}{100}$ wi	al data between two or more or	omputers	and a
computer network that allows con	inque of digitation	ange data	omputers	allu a
 Explain with the basics of data con 	munication a	nd various types of computer	networks	
Demonstrate Medium Access Con	trol protocols	for reliable and noisy channels	a a a a a a a a a a a a a a a a a a a	,
 Expose wireless and wired LANs 	litor protocols	for renable and noisy enamers		
Module 1				Contact
				Hours
Introduction: Data Communications, Net	works, Netwo	rk Types, Internet History, Sta	indards	08
and Administration, Networks Models: I	Protocol Layer	ing, TCP/IP Protocol suite, T	he OSI	
model, Introduction to Physical Layer-	1: Data and S	ignals, Digital Signals, Transr	nission	
Impairment, Data Rate limits, Performanc	e.			
Textbook1: Ch 1.1 to 1.5, 2.1 to 2.3, 3.1,	3.3 to 3.6			
RBT: L1, L2				
Module 2				
Digital Transmission: Digital to digital conversion (Only Line coding: Polar, Bipolar and			lar and	08
Manchester coding).				
Physical Layer-2: Analog to digital conversion (only PCM), Transmission Modes,				
Analog Transmission: Digital to analog conversion.				
Textbook1: Ch 4.1 to 4.3, 5.1				
RBT: L1, L2				
Module 3	<u> </u>			
Bandwidth Utilization: Multiplexing and	Spread Spectr	um,		08
Switching: Introduction, Circuit Switched	networks and	ding Cyclic and a Chackey	~	
Taythook 1. Ch 6 1 6 2 8 1 to 8 3 10 1 t	0 10 1	ounig, Cyclic codes, Checksul	11,	
RRT: L1. L2	0 10.4			
Module 4				
Data link control : DLC services, Data lin	k laver protoc	ols. Point to Point protocol (Fr	aming.	08
Transition phases only).	5 1		0,	
Media Access control: Random Access, 0	Controlled Acc	ess and Channelization,		
Introduction to Data-Link Layer: Introd	luction, Link-I	ayer Addressing, ARP		
IPv4 Addressing and subnetting: Classf	ul and CIDR a	ddressing, DHCP, NAT		
Textbook1: Ch 9.1, 9.2, 11.1, 11.2 11.4, 1	12.1 to 12.3, 1	8.4		
RBT: L1, L2				
Module 5				
Wired LANs Ethernet: Ethernet Pro	tocol, Standar	d Ethernet, Fast Ethernet, G	Gigabit	08
Ethernet and 10 Gigabit Ethernet,				
Wireless LANs: Introduction, IEEE 802.1	1 Project and	Bluetooth.		
Other wireless Networks: Cellular Telep	hony			

Textbook1: Ch 13.1 to 13.5, 15.1 to 15.3, 16.2

RBT: L1, L2

Course Outcomes: The student will be able to :

- Explain the various components of data communication.
- Explain the fundamentals of digital communication and switching.
- Compare and contrast data link layer protocols.
- Summarize IEEE 802.xx standards

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

 Behrouz A. Forouzan, Data Communications and Networking 5E, 5th Edition, Tata McGraw-Hill, 2013.

Reference Books:

- 1. Alberto Leon-Garcia and Indra Widjaja: Communication Networks Fundamental Concepts and Key architectures, 2nd Edition Tata McGraw-Hill, 2004.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- 3. Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Nader F. Mir: Computer and Communication Networks, Pearson Education, 2007.

DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY				
(Effective from the academic year 2018 -2019)				
Course C	ode	18CSL47	CIE Marks	40
Number of	Number of Contact Hours/Week 0.2.2 SEE Marks 60			
Total Nu	mber of Lab Contact Hours	36	Exam Hours	03
	(Credits – 2		•
Course I	Learning Objectives: This course (18C	SL47) will enabl	e students to:	
• [Design and implement various algorithm	s in JAVA		
• E	Employ various design strategies for pro	blem solving.		
• N	Measure and compare the performance of	f different algori	ithms.	
Descript	ions (if any):			
• [Design, develop, and implement the spe	cified algorithm	s for the following prob	olems using Java
1:	anguage under LINUX /Windows envi	ronment. Netbe	ans / Eclipse or Intellij	Idea Community
E	Edition IDE tool can be used for develop	ment and demor	nstration.	
• I	nstallation procedure of the requir	ed software m	ust be demonstrated,	carried out in
g	roups and documented in the journal	•		
Program	s List:			
<u> </u>			1 / 1 1 1 1	• •,
a	Create a Java class called <i>Student</i> w	ith the following	g details as variables with	11n 1t.
	(i) USIN (ii) Nama			
	(ii) Programme			
	(iii) Phone			
	Write a Java program to create <i>nStud</i>	dent objects and	print the USN Name Pr	ogramme and
	Phoneof these objects with suitable I	neadings.	print the OST, Plane, P	ogramme, and
b	. Write a Java program to impleme	ent the Stack u	sing arrays. Write Pus	h(), Pop(), and
	Display() methods to demonstrate its	s working.	6 ,	· · · ·
2.				
a	. Design a superclass called <i>Staff</i> wi	th details as Sta	ffId, Name, Phone, Sala	ary. Extend this
	class by writing three subclasses namely Teaching (domain, publications), Technical			ons), <i>Technical</i>
	(skills), and Contract (period). Write a Java program to read and display at least 3 staff			
	objects of all three categories.			
b	Write a Java class called <i>Customer</i>	to store their nar	ne and date_of_birth. Th	he date_of_birth
	format should be dd/mm/yyyy.	Write methods	to read customer da	ata as <name,< th=""></name,<>
	du/mm/yyyy> and display as <n< th=""><th>ame, ad, mm, a ""</th><th>yyyy> using String I</th><th>okemzer class</th></n<>	ame, ad, mm, a ""	yyyy> using String I	okemzer class
3		.5 / .		
J. 9	Write a Java program to read two in	tegers <i>a</i> and <i>b</i>	ompute alb and print w	nen <i>b</i> is not zero
a	Raise an exception when b is equal t	o zero	ompute <i>arb</i> and print, wi	ien <i>b</i> 13 not zero.
h	Write a Java program that implement	ts a multi-thread	l application that has the	ee threads. First
	thread generates a random integer for	or every 1 second	d: second thread comput	es the square of
	the number andprints; third thread w	ill print the valu	e of cube of the number.	
4.	Sort a given set of <i>n</i> integer elem	ents using Qui	ck Sort method and co	ompute its time
	complexity. Run the program for var	ried values of n>	- 5000 and record the tin	ne taken to sort.
	Plot a graph of the time taken versu	s <i>n</i> on graph shee	et. The elements can be	read from a file
	or can be generated using the rando	om number gene	erator. Demonstrate usin	g Java how the
	divide-and-conquer method works	along with its	time complexity analys	sis: worst case,
	average case and best case.			
5.	Sort a given set of <i>n</i> integer elem	ents using Mer	ge Sort method and co	ompute its time

	complexity. Run the program for varied values of $n > 5000$, and record the time taken to
	sort. Plot a graph of the time taken versus <i>n</i> on graph sheet. The elements can be read from a
	file or can be generated using the random number generator. Demonstrate using Java how
	the divide-and-conquer method works along with its time complexity analysis: worst case,
	average case and best case.
6.	Implement in Java, the 0/1 Knapsack problem using (a) Dynamic Programming method (b)
	Greedy method.
7.	From a given vertex in a weighted connected graph, find shortest paths to other vertices
	using Dijkstra's algorithm . Write the program in Java.
8.	Find Minimum Cost Spanning Tree of a given connected undirected graph using
	Kruskal'salgorithm. Use Union-Find algorithms in your program
9.	Find Minimum Cost Spanning Tree of a given connected undirected graph using
	Prim's algorithm.
10.	Write Java programs to
	(a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm.
	(b) Implement Travelling Sales Person problem using Dynamic programming.
11.	Design and implement in Java to find a subset of a given set $S = \{S_1, S_2, \dots, S_n\}$ of <i>n</i>
	positive integers whose SUM is equal to a given positive integer d. For example, if $S = \{1, 2,, n\}$
	5, 6, 8} and $d= 9$, there are two solutions {1,2,6} and {1,8}. Display a suitable message, if
	the given problem instance doesn't have a solution.
12.	Design and implement in Java to find all Hamiltonian Cycles in a connected undirected
	Graph G of <i>n</i> vertices using backtracking principle.
Laborator	y Outcomes: The student should be able to:
• De	sign algorithms using appropriate design techniques (brute-force, greedy, dynamic
pro	ogramming, etc.)
• Im	plement a variety of algorithms such assorting, graph related, combinatorial, etc., in a high
lev	rel language.
• An	alyze and compare the performance of algorithms using language features.
• Ap	ply and implement learned algorithm design techniques and data structuresto solve real-world
pro	oblems.
Conduct o	f Practical Examination:
• Ex	periment distribution
	• For laboratories having only one part: Students are allowed to pick one experiment from
	the lot with equal opportunity.
	• For laboratories having PART A and PART B: Students are allowed to pick one
	experiment from PART A and one experiment from PART B, with equal opportunity.
• Ch	ange of experiment is allowed only once and marks allotted for procedure to be made zero of
the	e changed part only.
• Ma	arks Distribution (Courseed to change in accoradance with university regulations)
6	e) For laboratories having only one part – Procedure + Execution + Viva-Voce: 15+70+15 =
	100 Marks
f f	F) For laboratories having PART A and PART B
	i. Part A – Procedure + Execution + Viva = $6 + 28 + 6 = 40$ Marks
	ii. Part B – Procedure + Execution + Viva = $9 + 42 + 9 = 60$ Marks

MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY					
(Effective from the academic year 2018 - 2019)					
	SEME	ESTER – IV			
Course Code		18CSL48	CIE Marks	40	
Number of Contact Hours/Week		0:2:2	SEE Marks	60	
Total Number of Lab Contact Hours	ļ	36	Exam Hours	03	
	Cr	redits – 2			
Course Learning Objectives: This con	urse (18CSI	.48) will enable	students to:		
 Develop and test Program using 	g ARM7TD	MI/LPC2148			
• Conduct the experiments on an	ARM7TDN	MI/LPC2148 eva	aluation board using ev	aluation version	
of Embedded 'C' & Keil Uvisio	on-4 tool/cor	mpiler.			
Descriptions (if any):					
Programs List:					
PART A Conduct the following expe	riments by	writing program	using ARM7TDMI/I	PC2148 using an	
evaluation board/simulator and the requ	uired softwa	re tool.	C	C	
1. Write a program to multiply ty	wo 16 bit bi	nary numbers.			
2. Write a program to find the su	m of first 1	0 integer number	rs.		
3. Write a program to find factor	rial of a num	nber.			
4. Write a program to add an arra	ay of 16 bit	numbers and sto	ore the 32 bit result in i	nternal RAM	
5. Write a program to find the so	uare of a nu	umber (1 to 10) u	using look-up table.		
6. Write a program to find the la	rgest/smalle	st number in an	array of 32 numbers.		
7. Write a program to arrange a s	series of 32	bit numbers in a	scending/descending o	order.	
8. Write a program to count the	number of o	nes and zeros in	two consecutive mem	ory locations.	
PART – B Conduct the following ex	xperiments	on an ARM7T	DMI/LPC2148 evalua	ation board using	
evaluation version of Embedded 'C' & I	Keil Uvisior	n-4 tool/compile	r.	U	
9. Display "Hello World" messa	ge using Int	ernal UART.			
10. Interface and Control a DC M	otor.				
11. Interface a Stepper motor and	rotate it in c	clockwise and ar	nti-clockwise direction		
12. Determine Digital output for a	a given Anal	log input using I	nternal ADC of ARM	controller.	
13. Interface a DAC and generate	Triangular	and Square wave	eforms.		
14. Interface a 4x4 keyboard and	display the l	key code on an I	LCD.		
15. Demonstrate the use of an ext	ernal interru	pt to toggle an I	LED On/Off.		
16. Display the Hex digits 0 to F	on a 7-segm	ent LED interfac	ce, with an appropriate	delay in between	
	0			5	
Laboratory Outcomes: The student sh	ould be able	e to:			
 Develop and test program using 	g ARM7TD	MI/LPC2148			
Conduct the following experiment	ients on an A	ARM7TDMI/LP	C2148 evaluation boar	rd using	
evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.					
Conduct of Practical Examination:					
 Experiment distribution 					
 For laboratories having 	g only one p	art: Students are	allowed to pick one ex	xperiment from	
the lot with equal opportunity.					
 For laboratories having PART A and PART B: Students are allowed to pick one 					
experiment from PART A and one experiment from PART B, with equal opportunity.					
• Change of experiment is allowed only once and marks allotted for procedure to be made zero of the					
changed part only.					
• Marks Distribution (<i>Courseed to change in accoradance with university regulations</i>)					
g) For laboratories having only one part – Procedure + Execution + Viva-Voce: 15+70+15 =					

	100 Marks
h)	For laboratories having PART A and PART B
	i. Part A – Procedure + Execution + Viva = $6 + 28 + 6 = 40$ Marks
	ii. Part B – Procedure + Execution + Viva = $9 + 42 + 9 = 60$ Marks

B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER - IV

ADDITIONAL MATHEMATICS – II

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators.[*Particular Integral restricted to* $R(x) = e^{ax}$, sin ax /cos ax for f(D)y = R(x).]

Module-4

Partial Differential Equations (PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes: At the end of the course the student will be able to:

CO1: Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
Textbook								
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015				
Reference Books								
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015				
2	Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007				
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015				