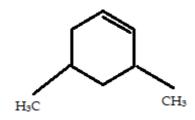
Chemistry - 3

1.	How many moles are present in 2.5 L of 0.2 M H_2 SO_4 ? (A) 0.25 (B) 0.5 (C) 0.75 (D) 22.10
2.	The number of molecules in 4.25 g of NH_3 is
	(a) 1.5×10^{23}
	(b) 2.5×10^{23}
	(c) 3.0×10^{23}
	(d) 8×10^{23}
3.	What is the wavelength associated with an electron moving with a velocity of 106m/s?
	(given: $h = 6.63 \times 10^{-34} \mathrm{Js}$)
	(a) 0.727 nm
	(b) 0.27 nm
	(c) 0.36 nm
	(d) 72.7 nm
4.	When the electrons of hydrogen atoms return to " $\it L$ " shell from shells of higher energy levels, we get
	a series of lines in the spectrum. This series is called
	(a) lyman series
	(b) Balmer series
	(c) Paschen series
	(d) Brackett series
5.	Which of the following has highest ionisation potential?
	(a) Al^+
	(b) Mg^+
	(c) Ne
	$(d) Li^+$
6	Which of the following has the largest size?
6.	Which of the following has the largest size?
	(a) Br^{-}
	(b) Br
	(c) Cl
	(d) Cl^-


7.	<i>IF</i> ₇ has bond pairs and lone pairs respectively
	(a) 5, 2
	(b) 2, 3
	(c) 4, 3
	(d) 7, 0
8.	The formation of ammonia born trifluoride adduct is an example of
	(a) Covalent bond
	(b) Coordinate covalent bond
	(c) Ionic bond
	(d) Hydrogen bond
9.	The temperature at which a real gas obeys ideal gas laws over a wide range of pressure is called
	(a) Critical temperature
	(b) Inversion temperature
	(c) Curie temperature
	(d) Boyle temperature
10.	At constant pressure a gas at $27^{\circ}C$ is heated so that final volume is 25% more than initial volume. What is the final temperature?
	(a) 33.75° C
	(b) 252° <i>C</i>
	(c) 77° <i>C</i>
	(d) 102°C
11.	Equal volume of $1M$ HCl and $1M$ H $_2SO_4$ are separated neutralised by adding excess NaOH. The heat evolved is x kJ and y kJ respectively. Then
	(a) x=y
	(b) $x=y/2$
	(c) $x=2y$
	(d) $x=y/4$
12.	4 grams of methane burns to give 2.5 k.cals of heat. The heat of combustion of methane would be
	(a) 20 k.cals
	(b) 10 k.cals
	(c) 2.5 k.cals
	(d) 5 k.cals

13. The forward reaction proceeds towards near completion if the equilibrium constant of a reaction is
(a) $k = 10^3$
(b) $K = 10^{-3}$
(c) $K = 10$
(d) $K = 1$
14. For the equilibrium $2NO_2(g) = N_2O_4(g) + 14.6k.cal$, the increase in temperature would
(a) favours the formation of N_2O_4
(b) favour the decomposition of N_2O_4
(c) not alter the equilibrium
(d) stop the reaction
15. The concetration of CrO_4^{2-} in a saturated solution of Na_2CrO_4 is 2×10^{-4} . Solubility product of sodium chromate is (a) 16×10^{-12} (b) 4×10^{-8} (c) 8×10^{-12} (d) 32×10^{-12}
16. Lewis acids are those substances
(a) which accept an electron pair
(b) which provide H^+ ion in the solution
(c) which give an electron pair
(d) which accept OH^- ion
17. If three electrons are lost by a metal ion M^{+2} , its final oxidation number would be
(a) Zero
(b) +5
(c) +2
(d) +4
18. Ovidation number of Sin No. S.O. (sodium totrathionata) is
18. Oxidation number of S in $Na_2S_4O_6$ (sodium tetrathionate) is
(a) +1.5 (b) +2.5
(c) +3
(d) +2
\ / -

	(a) 5
	(b) 4
	(c) 3
	(d) 2
20.	Blackened oil painting can be restored into original form by treating with
	(a) BaO_2
	(b) MnO_2
	(c) Chlorine
	(d) H_2O_2
21.	Which of the following processes will produce hard water?
	(a) addition of sodium sulphate to water
	(b) saturation of water with $CaCO_3$
	(c) saturation of water with $CaSO_4$
	(d) saturation of water with $MgCO_3$
22.	Dead burnt plaster is
	(a) CaSO ₄
	(b) CaSO ₄ .1/2H ₂ O
	(c) CaSO ₄ .H ₂ O
	(d) CaSO ₄ .2H ₂ O
23.	What are the products formed when Li_2CO_3 undergoes decomposition?
	(a) $\text{Li}_2\text{O}_2 + \text{CO}$
	(b) $\text{Li}_2\text{O} + \text{CO}$
	(c) $\text{Li}_2\text{O}_2 + \text{CO}_2$
	(d) $LiO_2 + CO$
24.	Boric acid is an acid because its molecule
	(a) contains replaceable H^+ ion
	(b) gives up a proton
	(c) accepts OH^- from water releasing proton
	(d) combines with proton from water molecule

19. The number of electrons required to balance the following equation $NO_3+4H^++e^- \rightarrow 2H_2O+NO$ is

- 25. Catenation i.e., linking of similar atoms depends on size and electronic configuration of atoms. The tendency of catenation in group 14 elements follows the order:
 - (a) C < Si > Ge > Sn
 - (b) $C > Si > Ge \approx Sn$
 - (c) Si > C > Sn > Ge
 - (d) Ge > Sn > Si > C
- 26. How much of Sulphur is present in an organic compound if 0.53 g of compound gave 1.158g of $BaSO_4$ on analysis?
 - (a) 10%
 - (b) 15%
 - (c) 20%
 - (d) 30%
- 27. The IUPAC name of the compound shown below is

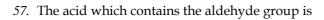
- (a) 3,5-Dimethylcyclohexene
- (b) 1,5-Dimethyl-3-cyclohexene
- (c) 1,5-Dimethyl-5-cyclohexene
- (d) 1,3-Dimethyl-5-cyclohexene
- 28. Positive inductive effect is shown by
 - (a) -CH₃
 - (b) -Br
 - (c) -Cl
 - (d) $-NO_2$
- 29. Reaction of *HBr* with propene in the presence of peroxide gives
 - (a) iso-propyl bromide
 - (b) (b) 3-bromo propane
 - (c) allyl bromide
 - (d) n-propyl bromide
- 30. Which of the following reagent can distinguish between 1-butyne and 2-butyne?
 - (a) Aqueous NaOH
 - (b) Bromine water
 - (c) Fehling's solution
 - (d) Ammoniacal AgNO₃
- 31. The gas that is not considered as a "greenhouse gas" is

(a)	CO_2
(b)	CH ₄
(c)	O_2
(d)	O_3
32. In a clos	se packed cubic structure, the anions (B) occupy the lattice and the cation (A) fit into alternate
tetrahed	dral voids. Formula of the compound is
(a)	AB_2
(b)	A_2B
(c)	AB
(d)	AB_4
33. Silicon	doped with arsenic is an example of
(a)	intrinsic semiconductor
(b)	p-type semiconductor
(c) 1	n-type semiconductor
(d)	non-conductor
_	eous solution freezes at $-0.186^{\circ}C$ what is the elevation in boiling point?
$(k_f = 1.86 k_b = 0.5)$	
` ,	0.186
` '	0.152 0.0512
` '	0.86
35 If 3g of	glucose (mol.wt.180) is dissolved in 60g of water at $15^{\circ}C$, the osmotic pressure of the
	n will be
(a)	3.4 atm
(b)	0.65 atm
(c)	6.57 atm
(d)	5.57 atm
36. When a	silver cup is plated with silver by passing 482.5 <i>C</i> of electricity, the amount of silver
deposit	ed is
(a)	5.039g
(b)	50.39g
(c)	0.539 g
(d)	0.05039 g

37.	Specific conductance of $0.02M\ KCl$ is $0.0022\ \mathrm{Scm}^{-1}$, its molar conductance is
	(a) 44
	(b) 110
	(c) 0.11
	(d) 9.09
38.	The rate of reaction between A and B increased by a factor of 100, when the concentration of A is
	increased 10 folds. The order of the reaction with respect to A is
	(a) 10
	(b) 1
	(c) 4
	(d) 2
39	75% of a first order reaction was completed in 32 minutes, when was 50% of the reaction completed?
57.	(a) 16 minutes
	(b) 24 minutes
	(c) 8 minutes
	(d) 4 minutes
40.	Among the electrolytes Na ₂ SO ₄ , CaCl ₂ ,Al ₂ (SO ₄) ₃ And NH ₄ Cl the most effective coagulating agent
	for Sb_2S_3 sol is
	(a) Na_2SO_4
	(b) CaCl ₂
	$(c)Al_2(SO_4)_3$
	(d) NH ₄ Cl
41.	Which of the following is incorrect regarding physisorption?
	(a) It occurs because of van der Waal's forces
	(b) More easily liquefiable gases are adsorbed readily
	(c) Under high pressure, it results into multimolecular layer on adsorbent surface
	(d) Enthalpy of adsorption is low and positive
42.	Zone refining method has been employed for preparing ultra-pure sample of
	(a) Copper
	(b) Zinc
	(c) Germanium
40	(d) Silver
43.	Extraction of zinc from zinc blende is achieved by:
	(a) electrolyte reduction (b) reacting followed by reduction with carbon
	(b) roasting followed by reduction with carbon(c) roasting followed by reduction with another metal
	(d) roasting followed by self-reduction (d) roasting followed by self-reduction
	TOT TOUSTING TOHOWED BY SEH-TEURCHOH

44. Acidified potassium dichromate is treated with H ₂ S. In this reaction the oxidation number of Chromium (a) increases from +3 to +6 (b) decreases from +6 to +3 (c) decreases from +6 to +4 (d) increases from +1 to +6 45. Which gas is most soluble in water? (a) He (b) Ne (c) Ar (d) Xc 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₅ (d) SbH ₅ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) L-I (d) Br-Br 48. Which of the following oxidation state is common for all lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe] J ² /S ² J ⁴ /S ³ C ² (d) [Xe] J ⁴ /S ³ C ³ C ³ (e) [Xe] J ⁴ /S ³ C ³ C ³ (f) [Xe] J ⁴ /S ³ C ³ C ³ (g) [CrCl ₃ (H ₂ O ₃)] -3H ₂ O (h) [CrCl ₃ (H ₂ O ₃)] Cl2H ₂ O (c) [CrCl ₄ (H ₂ O ₃)] Cl2H ₂ O (d) [Cr(H ₂ O ₃)] Cl3		
(c) decreases from +6 to +4	44.	Chromium
(d) increases from +4 to +6 45. Which gas is most soluble in water? (a) He (b) Ne (c) Ar (d) Xe 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₄ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ⁶ 6s ² (b) [Xe]4f ⁸ 5d ⁶ 6s ² (c) [Xe]4f ⁸ 5d ⁶ 6s ² (d) [Xe]4f ⁸ 5d ⁶ 6s ² (e) [Xe]4f ⁸ 5d ⁶ 6s ² (f) [CrCl ₃ (H ₂ O) ₃] _{1,1} H ₂ O (h) [CrCl ₃ (H ₂ O) ₃] _{1,1} H ₂ O (c) [CrCl ₃ (H ₂ O) ₃]Cl2H ₂ O		(b) decrease from +6 to +3
(a) He (b) Ne (c) Ar (d) Xe 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₅ (d) 55H ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) 1-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ³ 5d ³ 6s ² (b) [Xe]4f ⁵ 5d ³ 6s ² (c) [Xe]4f ⁵ 5d ³ 6s ² (d) [Xe]4f ⁵ 5d ³ 6s ² (e) [Xe]4f ⁵ 5d ³ 6s ² (f) [CrCl ₃ (H ₂ O ₃)] 3H ₂ O (h) [CrCl ₃ (H ₂ O ₃)] Cl2H ₂ O (c) [CrCl ₃ (H ₂ O ₃] Cl2H ₂ O (c) [CrCl ₄ (H ₂ O ₃] Cl2H ₂ O		
(b) Ne (c) Ar (d) Xe 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₃ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) LI (d) Br-Br 48. Which of the following oxidation state is common for al lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ^a 5d ^a 6s ^a (b) [Xe]4f ^a 5d ^a 6s ^a (c) [Xe]4f ^a 5d ^a 6s ^a (d) [Xe]4f ^a 5d ^a 6s ^a (d) [CeCl ₃ (H ₂ O) ₃] ₃ H ₂ O (b) [CrCl ₃ (H ₂ O) ₃] ₃ H ₂ O (c) [CrCl ₃ (H ₂ O) ₃] ₃ Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₃] ₃ Cl2H ₂ O	45.	Which gas is most soluble in water?
(c) Ar (d) Xe 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₅ (d) SbH ₅ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ³ 5d ³ 6s ² (b) [Xc]4f ³ 5d ³ 6s ² (c) [Xe]4f ³ 5d ³ 6s ² (d) [Xe]4f ³ 5d ³ 6s ² (d) [CrCl ₃ (H ₂ O) ₃] cl ₂ D ₂ O (b) [CrCl ₂ (H ₂ O) ₃] Cl ₂ H ₂ O (c) [CrCl ₃ (H ₂ O) ₃] Cl ₂ H ₂ O (c) [CrCl ₃ (H ₂ O) ₃] Cl ₂ H ₂ O (c) [CrCl ₃ (H ₂ O) ₃] Cl ₂ H ₂ O		(a) He
(d) Xe 46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₃ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) 1-1 (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ³ 5d ³ 6s ² (b) [Xe]4f ³ 5d ³ 6s ² (c) [Xe]4f ³ 5d ² 6s ² (d) [Xe]4f ² 5d ² 6s ² (e) [Xe]4f ³ 5d ² 6s ² (f) [Xe]4f ³ 5d ² 6s ² (g) [Xe]4f ³ 5d ² 6s ² (h) [Xe]4f ² 5d ² 6s ²		(b) Ne
46. Strongest base among NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is (a) NH ₃ (b) PH ₃ (c) AsH ₃ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4y*5d*6s² (b) [Xe]4y*5d*6s² (c) [Xe]4y*5d*6s² (d) [Xe]4y*5d*6s² (e) [Xe]4y*5d*6s² (f) [Xe]4y*5d*6s² (g) [Xe]4y*5d*6s² (h) [Xe]4y*6s*6s² (h) [Xe]4y*6s*6s		(c) Ar
(a) NH ₃ (b) PH ₃ (c) AsH ₃ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ⁴ 6s ² (b) [Xe]4f ⁸ 5d ⁴ 6s ² (c) [Xe]4f ⁸ 5d ⁵ 6s ² (d) [Xe]4f ⁸ 5d ⁵ 6s ² (e) [CrCl ₃ (H ₂ O) ₃] ₃ H ₂ O (f) [CrCl ₃ (H ₂ O) ₃] ₃ H ₂ O (g) [CrCl ₃ (H ₂ O) ₃](Cl2H ₂ O) (h) [CrCl ₃ (H ₂ O) ₃](Cl2H ₂ O) (c) [CrCl ₃ (H ₂ O) ₃](Cl2H ₂ O)		(d) Xe
(b) \$PH_3\$ (c) \$AsH_3\$ (d) \$BsH_3\$ 47. Which of the following bonds is the strongest? (a) \$F-F\$ (b) \$CI-CI\$ (c) \$I-I\$ (d) \$Br-Br\$ 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) \$[Xe]4f^85d^46s^2\$ (b) \$[Xe]4f^75d^46s^2\$ (c) \$[Xe]4f^35d^56s^2\$ (d) \$[Xe]4f^55d^26s^2\$ 50. When 1 mole \$CrCl_3.6H_2O\$ is treated with excess of AgNOs, 3 moles of \$AgCl\$ are obtained The formula of the complex is: (a) \$[CrCl_3(H_2O)_3]_{.3}H_2O\$ (b) \$[CrCl_2(H_2O)_4]_{CI2}H_2O\$ (c) \$[CrCl_3(H_2O)_5]_{CI2}H_2O\$	46.	Strongest base among $\mathrm{NH_3}$, $\mathrm{PH_3}$, $\mathrm{AsH_3}$ and $\mathrm{SbH_3}$ is
(c) AsH ₃ (d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) CI-CI (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f*5d¹6s² (b) [Xe]4f*5d¹6s² (c) [Xe]4f*5d²6s² (d) [Xe]4f*5d²6s² 30. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O		(a) NH_3
(d) SbH ₃ 47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ³ 5d ⁴ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ 6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₃ (H ₂ O) ₃]-3H ₂ O (c) [CrCl ₃ (H ₂ O) ₃]Cl2H ₂ O		(b) PH_3
47. Which of the following bonds is the strongest? (a) F-F (b) Cl-Cl (c) 1-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ³ 5d ³ 6s ² (c) [Xe]4f ³ 5d ³ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ 6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O ₃] ₃ H ₂ O (b) [CrCl ₂ (H ₂ O ₃] ₃]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O ₃] ₃]Cl2H ₂ O		(c) AsH_3
(a) F-F (b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O		(d) SbH_3
(b) Cl-Cl (c) I-I (d) Br-Br 48. Which of the following oxidation state is common for al lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f^85d^16s^2 (b) [Xe]4f^75d^16s^2 (c) [Xe]4f^35d^66s^2 (d) [Xe]4f^65d^26s^2 50. When 1 mole $CrCl_3.6H_2O$ is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₃]Cl2H ₂ O	47.	Which of the following bonds is the strongest?
(c) 1-I (d) Br-Br 48. Which of the following oxidation state is common for all anthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O		(a) F-F
(d) Br-Br 48. Which of the following oxidation state is common for al lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O		(b) Cl-Cl
48. Which of the following oxidation state is common for al lanthanoids? (a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O		(c) I-I
(a) +2 (b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl ₂ H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl ₂ H ₂ O		(d) Br-Br
(b) +3 (c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] ₋₃ H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl2H ₂ O	48.	Which of the following oxidation state is common for al lanthanoids?
(c) +4 (d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) $[Xe]4f^85d^16s^2$ (b) $[Xe]4f^75d^16s^2$ (c) $[Xe]4f^35d^56s^2$ (d) $[Xe]4f^65d^26s^2$ 50. When 1 mole $CrCl_3.6H_2O$ is treated with excess of AgNO ₃ , 3 moles of $AgCl$ are obtained The formula of the complex is: (a) $[CrCl_3(H_2O)_3]_{-3}H_2O$ (b) $[CrCl_2(H_2O)_4]Cl_2H_2O$ (c) $[CrCl_3(H_2O)_5]Cl_2H_2O$		(a) +2
(d) +5 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f ⁸ 5d ¹ 6s ² (b) [Xe]4f ⁷ 5d ¹ 6s ² (c) [Xe]4f ³ 5d ⁵ 6s ² (d) [Xe]4f ⁶ 5d ² 6s ² 50. When 1 mole CrCl ₃ .6H ₂ O is treated with excess of AgNO ₃ , 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl ₃ (H ₂ O) ₃] _{.3} H ₂ O (b) [CrCl ₂ (H ₂ O) ₄]Cl.2H ₂ O (c) [CrCl ₃ (H ₂ O) ₅]Cl.2H ₂ O		(b) +3
 49. The electronic configuration of gadolinium (Z=64) is: (a) [Xe]4f⁸5d¹6s² (b) [Xe]4f⁷5d¹6s² (c) [Xe]4f³5d⁵6s² (d) [Xe]4f⁶5d²6s² 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃]₋₃H₂O (b) [CrCl₂(H₂O)₄]Cl₂H₂O (c) [CrCl₃(H₂O)₅]Cl₂H₂O 		(c) +4
 (a) [Xe]4f⁸5d¹6s² (b) [Xe]4f⁷5d¹6s² (c) [Xe]4f³5d⁵6s² (d) [Xe]4f⁶5d²6s² 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃].₃H₂O (b) [CrCl₂(H₂O)₄]Cl.2H₂O (c) [CrCl₃(H₂O)₅]Cl.2H₂O 		(d) +5
 (b) [Xe]4f⁷5d¹6s² (c) [Xe]4f³5d⁵6s² (d) [Xe]4f⁶5d²6s² 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃].₃H₂O (b) [CrCl₂(H₂O)₄]Cl.2H₂O (c) [CrCl₃(H₂O)₅]Cl.2H₂O 	49.	
 (c) [Xe]4f³5d⁵6s² (d) [Xe]4f65d²6s² 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃].₃H₂O (b) [CrCl₂(H₂O)₄]Cl.2H₂O (c) [CrCl₃(H₂O)₅]Cl.2H₂O 		
 (d) [Xe]4f⁶5d²6s² 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃]₋₃H₂O (b) [CrCl₂(H₂O)₄]Cl₂H₂O (c) [CrCl₃(H₂O)₅]Cl₂H₂O 		(b) $[Xe]4f^75d^16s^2$
 50. When 1 mole CrCl₃.6H₂O is treated with excess of AgNO₃, 3 moles of AgCl are obtained The formula of the complex is: (a) [CrCl₃(H₂O)₃].₃H₂O (b) [CrCl₂(H₂O)₄]Cl.2H₂O (c) [CrCl₃(H₂O)₅]Cl.2H₂O 		(c) $[Xe]4f^35d^56s^2$
the complex is: (a) $\left[CrCl_3(H_2O)_3 \right]_{\cdot 3} H_2O$ (b) $\left[CrCl_2(H_2O)_4 \right] Cl.2H_2O$ (c) $\left[CrCl_3(H_2O)_5 \right] Cl.2H_2O$		(d) $[Xe]4f^65d^26s^2$
(b) $\left[CrCl_2(H_2O)_4 \right] Cl.2H_2O$ (c) $\left[CrCl_3(H_2O)_5 \right] Cl.2H_2O$	50.	
(c) $\left[CrCl_3(H_2O)_5 \right] Cl.2H_2O$		(a) $\left[CrCl_3 \left(H_2O \right)_3 \right]3 H_2O$
-		(b) $\left[CrCl_2(H_2O)_4 \right]$ Cl.2 H_2O
-	(c)	$\left\lceil CrCl_3(H_2O)_5 \right\rceil$ Cl.2 H_2O

- 51. Which is a bidentate ligand?
 - (a) Cyano
 - (b) Hydronium
 - (c) Oxalato
 - (d) EDTA
- 52. The compound of [PtCl₂(NH₄)]Br₂ and [PtBr₂(NH₃)₄]Cl₂ constitutes a pair of
 - (a) Coordination isomers
 - (b) Linkage isomers
 - (c) Ionisation isomers
 - (d) Optical isomers
- 53. Compound 'A' reacts with alcoholic KOH to yield compound 'B' which on ozonolysis followed by reaction with Zn/H_2O gives methanal and propanal. Compound 'A' is
 - (a) 1-propanol
 - (b) 1-butanol
 - (c) 1-chlorobutane
 - (d) 1-chloropentane
- 54. The IUPAC name of the compound shown below is



- (a) 3-bromo-1-chlorocyclohex-1-ene
- (b) 6-bromo-2-chlorocyclohex-1-ene
- (c) 1-bromo-3-chlorocyclohex
- (d) 1-bromo-5-chloroclohex-5-ene
- 55. In Lucas test an alcohol reacts immediately and gives insoluble chloride. The alcohol is
 - (a) CH₃OH
 - (b) CH₃CH₂OH
 - (c) $(CH_3)_2$ CHOH
 - (d) (CH₃)₃ COH

RCH₂CH₂OH can be converted to RCH₂CH₂COOH by the following sequence of steps

- (a) PBr_3, KCN, H_3O^+
- (b) PBr_3 , KCN, H_2/Pt
- (c) KCN, H_3O^+
- (d) HCN, PBr_3, H_3O^+

56. Which of the following, compounds is the reactant in Rosenmund's reduction?
a. CH ₃ CO ₂ H
b. CH ₃ CHO

a. acetic acid

c. CH₃CH₂Cld. CH₃COCl

- b. formic acid
- c. benzoic acid
- d. propionic acid
- 58. When aqueous solution of benzene diazonium chloride is boiled, the product formed is
 - (a) C₆H₅CH₂OH
 - (b) $C_6H_6+N_2$
 - (c) C₆H₅COOH
 - (d) C_6H_5OH

60.
$$\alpha$$
 – $D(+)$ – glucose and β – $D-(+)$ – glucose are

- (A) Conformers
- (B) Epimers
- (C) Anomers
- (D) Enantiomers