KCET MATHEMATICS MODEL QUESTION PAPER SET-04

1) If $y = 2x^{n+1} + \frac{3}{x^n}$ then $x^2 \frac{d^2 y}{dx^2}$ is					
a) y	b) 6n(n+1)y	c) n(n+1)y	d) $x \frac{dy}{dx} + y$		
2) Everybody in a room shakes hands with everybody else. The total number of handshakes is 45. The total number of persons in the room is					
a) 9	b) 10	c) 5	d) 15		
3) If $(xe)^y = e^x$, t	hen dy/dx is				
a) $\frac{e^x}{x(y-1)}$	b) $\frac{\log x}{(1+\log x)^2}$	c) $\frac{1}{(1-logx)^2}$	d) $\frac{logx}{(1+logx)}$		
4) If $P(n): 2^{2n} - 1$ is divisible by k for all $n \in N$ is true, then the value oof k is					
a) 6	b) 3	c) 7	d) 2		
5) The value of $\int \frac{1+x^4}{1+x^6} dx$ is					
a) $tan^{-1}x + (1)$	$(3) \tan^{-1} x^2 + c$	b) <i>tan</i> ⁻¹	$^{1}x + tan^{-1}x^{3} + c$		
c) $tan^{-1}x + (1)$	$(3) tan^{-1} x^3 + c$	d) <i>tan</i> ⁻	$x^{1}x - (1/3)tan^{-1}x^{3} + c$		
6) If $\left(\frac{[1-i]}{[1+i]}\right)^{96} = a + a$	<i>ib</i> then (a,b) is				
a) (1,1)	b) (1,0)	c) (0,1)	d) (0,-1)		
7) The value of $\int e^{i\theta}$	^{sinx} sin2x dx is				
a) 2e ^{sinx} (cos	(x-1) + c	b) 2 <i>e^{sinx}</i>	(sinx + 1) + c		
c) $2e^{sinx}(sinx)$	(x - 1) + c	d) 2 <i>e^{sinx}</i>	(cosx + 1) + c		

8) The number of ways in which 5 girls and 3 boys can be seated in a row so that no two boys are together is

a) 14040	b) 14440	c) 14000	d) 14400			
9) If $\int \frac{3x+1}{(x-1)(x-2)(x-2)(x-2)}$	$\frac{1}{x-3}dx = Alog x-1$	+Blog x-2 +Clog	x-3 +c, then the values			
of A, B and C a	are respectively					
a) 2,-7,5	b) 5,-7,-5	c) 2,-7,-5	d) 5, -7, 5			
10) The value of $\lim_{x \to 0} \left(\frac{ x }{x} \right)$ is						
a) 1	b) -1	c) 0	d) Does not exist			
10) The value of l_x	$\lim_{x \to 0} \left(\frac{ x }{x} \right) $ is					

11) The area of the region bounded by the curve $y^2 = 8x$ and the line y = 2x is

a) (8/3) sq.units b) (16/3) sq.units c) (4/3) sq.units d) (3/4) sq.units

12) The negation of the statement "72 is divisible by 2 and 3" is

a) 72 is not divisible by 2 or 72 is not divisible by 3

- b) 72 is divisible by 2 or 72 is divisible by 3
- c) 72 is divisible by 2 and 72 is divisible by 3
- d) 72 is not divisible by 2 and 3

13) The order of the differential equation obtained by eliminating arbitrary constants in the family of curves $c_1 y = (c_2 + c_3)e^{x+c_4}$ is a) 4 b) 1 c) 3 d) 2

14) In a simultaneous throw of a pair of dice, the probability of getting a total of more than 7 is

a) 7/12 b) 5/36 c) 5/12 d) 7/36

15) The area of the region bounded by the line y = 2x+1, x- axis and the ordinates x = -1 and x = 1 is

a) 5 b) 9/4 c) 2 d) 5/2

16) Let f, g : R \rightarrow R be two functions define as f (x) = |x| + x and g (x) = |x| - x \forall x \in R. Then (fog) (x) for x < 0 is a) 0 b) 4x c) -4x d) 2x

17) If \vec{a} and \vec{b} are two unit vectors and θ is the angle between two vectors \vec{a} and \vec{b} then $\sin(\theta/2)$ is a) $|\vec{a} - \vec{b}|$ b) $|\vec{a} + \vec{b}|$ c) $\frac{|\vec{a} - \vec{b}|}{2}$ d) $\frac{|\vec{a} + \vec{b}|}{2}$ 18) Let $f: R \to R$ be defined by $f(x) = \begin{cases} 2x & ;x > 3\\ x^2 & ;1 < x \le 3\\ 3x & ;x \le 1 \end{cases}$ then f(-1) + f(2) + f(4) is a) 9 b) 14 c) 5 d) 10

19) If $|\vec{a} \times \vec{b}|^2 + |\vec{a}.\vec{b}|^2$ and $|\vec{a}| = 6$, then $|\vec{b}|$ is equal to a) 4 b) 6 c) 3 d) 2

20) The value of the expression $\tan \left[\left(\frac{1}{2} \right) cos^{-1} \left(\frac{2}{\sqrt{5}} \right) \right]$ is a) $2 - \sqrt{5}$ b) $\sqrt{5} - 2$ c) $2 + \sqrt{5}$ d) 2+5

21) If the vector $2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$, $2\hat{\imath} + \hat{\jmath} - \hat{k}$ and $\lambda \hat{\imath} - \hat{\jmath} + 2\hat{k}$ are coplanar, then the value of λ is

a) 5 b) 6 c) -5 d) -6

22) If $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ then the value of x and y respectively are a) -3, -1 b) 1, 3 c) 3, 1 d) -1, 3

23) The sine of the angle between the straight line (x-2)/3 = (3-y)/(-4) = (z-4)/5 and the plane

a)
$$\frac{\sqrt{2}}{10}$$
 b) $\frac{3}{\sqrt{50}}$ c) $\frac{3}{50}$ d) $\frac{4}{5\sqrt{2}}$

24) If $x, y, z \in R$ then the value of the determinant $\begin{vmatrix} (5^x + 5^{-x})^2 & (5^x - 5^{-x})^2 & 1 \\ (6^x + 6^{-x})^2 & (6^x - 6^{-x})^2 & 1 \\ (7^x + 7^{-x})^2 & (7^x - 7^{-x})^2 & 1 \end{vmatrix}$ is

a) 10 b) 12 c) 1 d) 0

25) Corner points of the feasible region determined by the system of linear constraints are (0,3),(1,1) and (3,0). Let z = px+qy, where p,q>0. Condition on p and q so that the minimum of z occurs at (3,0) and (1,1) is

a) p = q b) p = 2q c) p = q/2 d) p = 3q

26) If $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are the vertices of a triangle whose area is 'k' square

units, then
$$\begin{vmatrix} x_1 & y_1 & 4 \\ x_2 & y_2 & 4 \\ x_3 & y_3 & 4 \end{vmatrix}^2$$
 is
a) $32k^2$ b) $16k^2$ c) $64k^2$ d) $48k^2$

27) A die is thrown 10 times, the probability that an odd number will come up at least one time is

a) 1013/1024 b) 1/1024 c) 1023/1024 d) 11/1024

28) If
$$f(x) = \begin{cases} \frac{\sqrt{1+kx}-\sqrt{1-kx}}{x} & if -1 \le x < 0\\ \frac{2x+1}{x-1} & if \ 0 \le x \le 1 \end{cases}$$
 is continuous at x=0, then the value of k is
a) 1 b) -1 c) 0 d) 2

29) Events E_1 and E_2 form a partition of the sample space S.A is any event such that

$$P(E_1) = P(E_2) = 1/2$$
, $P(E_2 | A) = 1/2$ and $(A | E_2) = 2/3$. Then $P(E_1 | A)$ is
a) $1/4$ b) $1/2$ c) $2/3$ d) 1

30) If $f(x) = |\cos x - \sin x|$, then $f'\left(\frac{\pi}{6}\right)$ is equal to a) $\left(-\frac{1}{2}\right)\left(1+\sqrt{3}\right)$ b) $\left(\frac{1}{2}\right)\left(1+\sqrt{3}\right)$ c) $\left(-\frac{1}{2}\right)\left(1-\sqrt{3}\right)$ d) $\left(\frac{1}{2}\right)\left(1-\sqrt{3}\right)$

31) If n(A) = 2 and total number of possible relations from set A to set B is 1024, then n(B) is
a) 5
b) 512
c) 20
d) 10

32) If $f(x) = \begin{cases} \frac{\log_e x}{x-1} & ; x \neq 1 \\ k & ; x = 1 \end{cases}$ is continuous at x=1, then the value of k is						
a) e	b) 1	c) -1	d) 0			
33) If tan A+cot A=2, then the value of $tan^4A + cot^4A$ is						
a) 5	b) 2	c) 1	d) 4			
34) The maximum value of $\left(\frac{1}{x}\right)^x$ is						
a) e	b) <i>e^e</i>	c) $e^{\frac{1}{e}}$	d) 0			
35) If $z = x + iy$, then the equation $ z+1 = z-1 $ represents						
a) y-axis	b) a circle	c) a parabola	d) x-axis			
36) The maximum area of a rectangle inscribed in the circle $(x + 1)^2 + (y - 3)^2 = 64$ is						
a) 64 sq. units	b) 72 sq. units	c) 128 sq. units	d) 8 sq. units			
37) The number of term	ns in the expansion of ($(x+y+z)^{10}$ is				
a) 110	b) 66	c) 142	d) 11			
38) $\int \left(\frac{1}{\sqrt{3}-6x+9x^2}\right) dx$ is equal to						
a) $\sin^{-1}\left(\frac{[3x+1]}{2}\right) + c$ b) $\sin^{-1}\left(\frac{[3x+1]}{6}\right) + c$ c) $\left(\frac{1}{3}\right)\sin^{-1}\left(\frac{[3x+1]}{2}\right) + c$ d) 0						
39) The two lines $lx+my = n$ and $l'x+m'y= n'$ are perpendicular if						
a) lm' + ml'= 0		b) ll'+mm'=0				
c) lm'=ml'		d) lm+l'm'=0				
40) $\int -2^2 x \cos \pi x dx$ is equal to						
a) $\frac{8}{\pi}$	b) $\frac{4}{\pi}$	c) $\frac{2}{\pi}$	d) $\frac{1}{\pi}$			
41) If the sum of n terms of an A.P. is given by $S_n = n^2 + n$, then the common difference of						
the A.P. is						

a) 6 b) 4 c) 1 d) 2

42) $\int_0^{1/2} \frac{1}{[(1+x^2)\sqrt{1-x^2}]} dx$ is equal to							
a) $\left(\frac{1}{\sqrt{2}}\right) tan^{-1} \left(\frac{\sqrt{2}}{3}\right)$	b) $\left(\frac{2}{\sqrt{2}}\right) tan^{-1} \left(\frac{\sqrt{2}}{3}\right)$	b) $\left(\frac{1}{\sqrt{2}}\right) tan^{-1} \left(\frac{\sqrt{3}}{3}\right)$	c) $\left(\frac{3}{\sqrt{2}}\right) tan^{-1} \left(\frac{\sqrt{2}}{3}\right)$				
43) The standard deviat	tion of the data 6,7,8,9,	10 is					
a) 10	b) √ 2	c) 10	d) 2				
44) The area bounded b	44) The area bounded by the line $y = x$, x-axis and ordinates $x = -1$ and $x = 2$ is						
a) 3/2	b) 5/2	c) 2	d) 3				
45) If a relation R on th	e set {1,2,3} be defined	d by $R = \{(1,1)\}$, then R	R is				
a) Only symmetric		b) Reflexive and symmetric					
d) Reflexive and transitive		d) Symmetric and transitive					
46) The solution of the differential equation $x\left(\frac{dy}{dx}\right) - y = 3$ represents a family of							
a) Straight lines	b) Circles	c) Parabolas	d) Ellipses				
47) If A, B, C are three mutually exclusive and exhaustive events of an experiment such that							
P(A) = 2P(B) = 3P(C), then $P(B)$ is equal to							
a) 4/11	b) 1/11	c) 2/11	d) 3/11				
48) If $\left \vec{a} \times \vec{b}\right ^2 + \left \vec{a}.\vec{b}\right $	$a^{2} = 144 \ and \ \vec{a} = 4$	then the value of $ \vec{b} $ i	S				
a) 1	b) 2	c) 3	d) 4				
49) The value of $\cos [\sin^{-1} \pi/3 + \cos^{-1} \pi/3]$ is							
a) does not exist	b) 0	c) 1	d) -1				
50) If the vectors $ai + j + k$, $i + bj + k$ and $i + j + ck$ are coplanar ($a \neq b \neq c \neq 1$),							
then the value of $abc - (a + b + c)$							
a) 2	b) -2	c) 0	d) -1				
51) If $A = \{a,b,c\}$, then the number of binary operations on A is							
a) 3 ⁹	b) 3	c) 3 ³	d) 3 ⁶				

52) The image of the point (1,6,3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ is

a) (1, 0, 7) b) (7,0, 10 c) (2, 7, 0) d) (-1, -6, -3)

53) If $\begin{vmatrix} x^3 - x & a + x & b + x \\ x - a & x^2 - x & c + x \\ x - b & x - c & 0 \end{vmatrix}$, then a) f(-1) = 0 b) f(1) = 0 c) f(2) = 0 d) f(0) = 0

54) The value of k such that the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies on the plane x - 4y + z = 7 is a) -7 b) 4 c) -4 d) 7

55) If A is a square matrix of order 3 and |A| = 5, then |A adj A| is

a) 625 b) 5 c) 125 d) 25

56) For the LPP; maximize z = x + 4y subject to the constraints $x + 2y \le 2$, $x + 2y \ge 8$, $x \ge 0$

a) $Z_{max} = 4$ b) $Z_{max} = 18$ c) $Z_{max} = 16$ d) Has no feasible solution

57) If $a_1, a_2, a_3, \dots, a_9$ are in A.P. then the value of $\begin{vmatrix} a_1 & a_3 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$ is

- a) 1 b) $9/2(a_1+a_9)$ c) (a_1+a_9) d) $\log_e(\log_e e)$
- 58) A bag contains 17 tickets numbered from 1 to 17. A ticket is drawn at random, then another ticket is drawn without replacing the first one. The probability that both the tickets may show even numbers is

59) If
$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 then $f'(\sqrt{3})$ is
a) $-1/\sqrt{3}$ b) $-1/2$ c) $1/2$ d) $1/\sqrt{3}$

60) The right hand and left limit of the function $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$ are

respectively

a) -1 and 1

b) 1 and 1

c) 1 and -1

d) -1 and -1