Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN \square 18MATDIP41

Fourth Semester B.E.(CBCS) Examination Additional Mathematics - II

(Common to all Branches)
Max.Marks: 100
Time: 3 Hrs
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1 (a) Find the rank of the following matrix by applying elementary row transformations
(06 Marks)

$$
\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2
\end{array}\right]
$$

(b) Solve the following system of linear equations by Gauss elimination method:
(07Marks)

$$
5 x+10 y+z=28 ; x+y+z=6 ; 4 x+8 y+3 z=29
$$

(c) Find all the eigenvalues and the corresponding eigenvectors of $\left[\begin{array}{cc}-5 & 9 \\ -6 & 10\end{array}\right]$

OR

2 (a) Reduce the matrix into its echelon form and hence find its rank
(06 Marks)

$$
\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & 1 & 1 \\
6 & 2 & 4
\end{array}\right]
$$

(b) Find all the eigenvalues and the corresponding eigenvectors of
(07Marks)

$$
\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & -2 & -1 \\
0 & 0 & -3
\end{array}\right]
$$

(c) Solve the system of linear equations $3 x+y-z=3 ; 2 x-8 y+z=-5 ; x-2 y+9 z=8$,
(07Marks) by applying Gauss elimination method.

Module-2

3 (a) Find a real root of $x \log _{10} x-1.2=0$, correct to three decimal places lying in the interval
(06 Marks) $(2,3)$, by using Regula-Falsi method.
(b) Use an appropriate interpolation formula to compute $f(2.18)$ for the following data

x	1.7	1.8	1.9	2.0	2.1	2.2
$f(x)$	5.474	6.050	6.686	7.389	8.166	9.025

(c) Use Weddle's rule to evaluate $\int_{-\pi / 2}^{\pi / 2} \cos x d x$, by dividing $[-\pi / 2, \pi / 2]$ into six equal parts.

4 (a) Find a real root of the equation $x^{3}+x^{2}+3 x+4=0$ near $x=-1$ correct to four decimal places, by using Newton- Raphson method.
(b) Use an appropriate interpolation formula to compute $f(42)$ for the following data:

x	40	50	60	70	80	90
$f(x)$	184	204	226	250	276	304

(c) Using Simpson's $(1 / 3)^{\text {rd }}$ rule, evaluate $\int_{0}^{3} \frac{d x}{(1+x)^{2}}$ by taking 6 equidistant ordinates.
(07Marks)

Module-3

5 (a) Solve : $\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}-2 y=0$.
(b) Solve : $\left(D^{2}-7 D+10\right) y=\left(1+e^{x}\right)^{2}$.
(06 Marks)
(c) Solve : $\left(D^{2}+2 D+3\right) y=\sin x$.

OR

6 (a) Solve: $\left(D^{3}-2 D^{2}+4 D-8\right) y=0$.
(b) Solve $\frac{d^{2} y}{d x^{2}}-4 y=\cosh (2 x-1)+3^{x}$.
(c) Solve $\left(\mathrm{D}^{2}+\mathrm{a}^{2}\right) y=\cos a x$.

Module-4

7 (a) Form the partial differential equation by eliminating the arbitrary constants from
(07Marks)

$$
2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} .
$$

(b) Form the partial differential equation by eliminating the arbitrary functions from

$$
z=f(y+2 x)+g(y-3 x)
$$

(c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, for which $\frac{\partial z}{\partial y}=-2 \sin y$, when $x=0$ and $z=0$ when y is odd.
(07Marks)

OR

8 (a) Form the partial differential equation by eliminating the arbitrary function from
(06 Marks) $f\left(x y+z^{2}, x+y+z\right)=0$.
(b) Form the partial differential equation by eliminating the arbitrary functions from
(07Marks)
$z=x f_{1}(x+y)+f_{2}(x+y)$.
(c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ for which $\frac{\partial z}{\partial x}=\log x$ when $y=1$ and $z=0$ when $x=1$.
(07Marks)

Module-5

9 (a) State the axiomatic definition of probability. For any two arbitrary events A and B, prove that

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) .
$$

(b) The probability that a team wins a match is $3 / 5$. If this team play 3 matches in a tournament, what is the probability that the team (i) win and (ii) loose, all the matches.
(c) In an UG class of a reputed engineering college, 70% are boys and 30% are girls; 5% of boys and 3% of the girls are irregular to the classes. What is the probability of a student selected at random is irregular to the classes and what is the probability that the irregular student is a girl?

OR

10 (a) State and prove Bayes's theorem.
(b) The chance that a doctor will diagonise a disease correctly is 60%. The chance that a patient will die after correct diagonise is 40% and the chance of death by wrong diagonise is 70%. If a patient dies, what is the chance that his disease was correctly diagonised?
(c) Three students A, B, C write an entrance examination, their chances of passing are $1 / 2,1 / 3$ and
(06 Marks)
(07Marks)
(07Marks)
 (07Marks) $1 / 4$ respectively. Find the probability that (i) atleast one of them passes (ii) atleast two of them passes (iii) all of them passes.

Module - I

1. a) Find the rank of the following matrix by applying elementary row transformations.

$$
\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2
\end{array}\right]
$$

Sol2: Let $A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2\end{array}\right]$

$$
\begin{aligned}
& R_{1} \leftrightarrow R_{2}, A \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
2 & 3 & -1 & -1 \\
3 & 1 & 3 & -2
\end{array}\right] \\
& \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}, A \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10
\end{array}\right] \\
& R_{3} \rightarrow 5 R_{3}-4 R_{2}, A \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 0 & 33 & 22
\end{array}\right]
\end{aligned}
$$

The above matrix is in the echelon form and has 3 non-zero rows.

$$
\therefore \text { Rank of } A=\rho[A]=3 \text {. }
$$

1.b) Solve the following system of linear equations by Gacus - elimination method

$$
5 x+10 y+z=28, \quad x+y+z=6, \quad 4 x+8 y+3 z=29
$$

Sol 2:
The above system of equations can be written in the matrix form $A X=B$

$$
\left[\begin{array}{ccc}
5 & 10 & 1 \\
1 & 1 & 1 \\
4 & 8 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
28 \\
6 \\
29
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
& {[A: B]=\left[\begin{array}{cccc}
5 & 10 & 1 & : \\
1 & 1 & 1 & 0 \\
4 & 8 & 3 & : \\
29
\end{array}\right]} \\
& R_{1} \leftrightarrow R_{2}, \quad[A: B] \sim\left[\begin{array}{ccccc}
1 & 1 & 1 & 6 \\
5 & 10 & 1 & : & 28 \\
4 & 8 & 3 & : & 29
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-5 R_{1} \\
& R_{3} \rightarrow R_{3}-4 R_{1},[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & : \\
0 & 5 & -4 & : \\
0 & 4 & -1 & -2 \\
0
\end{array}\right] \\
& R_{3} \rightarrow 5 R_{3}-4 R_{2},[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & : \\
0 & 5 & -4 & :-2 \\
0 & 0 & 11 & : 33
\end{array}\right]
\end{aligned}
$$

Hex matrix A is in upper triangular form. Now convert the above matrix into equations

$$
\begin{align*}
x+y+z & =6 \tag{1}\\
5 y-4 z & =-2 \tag{2}\\
11 z & =33 \tag{3}\\
z & =3
\end{align*}
$$

From (2), $5 y-12=-2 \Rightarrow y=2$
From (1), $x+2+3=6 \Rightarrow x=1$

$$
\therefore x=1, y=2, \quad z=3 .
$$

1. c) Find all the Eigen values and the corresponding Eigen vectors of $\left[\begin{array}{cc}-5 & 9 \\ -6 & 10\end{array}\right]$
Solution: Let $A=\left[\begin{array}{cc}-5 & 9 \\ -6 & 10\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{array}{cc}
\left|\begin{array}{cc}
(5-\lambda) & 9 \\
-6 & (10-\lambda)
\end{array}\right|=0 \\
(-5-\lambda)(10-\lambda)+54=0 \Rightarrow \lambda^{2}-5 \lambda+4=0
\end{array}
$$

$\therefore \lambda=1,4$ are the eigen values of A
The sigen vectors ere found from the equation

$$
\begin{align*}
& [A-\lambda I][x]=\operatorname{co}] \\
& {\left[\begin{array}{cc}
(-5-\lambda) & 9 \\
-6 & (10-\lambda)
\end{array}\right]\left[\begin{array}{l}
x \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \left.\begin{array}{c}
(-5-\lambda) x+9 y=0 \\
-6 x+(10-\lambda) y=0
\end{array}\right\}-(x) \tag{x}
\end{align*}
$$

care (i): When $\lambda=1$. we have $-6 x+9 y=0$

$$
-6 x+9 y=0
$$

Consider $-6 x+9 y=0 \Rightarrow-6 x=-9 y$

$$
\Rightarrow \quad \frac{x}{9}=\frac{4}{6}=k \quad \therefore x=9 k, y=6 k
$$

whee k is arbitrary. If $k=1$ then $x=9, y=6$
\therefore Eigen rector when $\lambda=1$ is $x_{1}=\left[\begin{array}{l}9 \\ 6\end{array}\right]$
Care(ii): When $\lambda=4$
We have $-9 x+94=0$ and $-6 x+64=0$
consider $-9 x=-94 \Rightarrow \frac{x}{a}=\frac{4}{9}=k \Rightarrow x=k, 4=k$
If $k=1$ then $x=1, y=1$
\therefore Eigen vector when $\lambda=4$ is $x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Qa)
Reduce the matrix into its echelon form and hence find its rank
Solution: Let $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 1 & 1 \\ 6 & 2 & 4\end{array}\right]$

$$
\begin{aligned}
& R_{2} \rightarrow 3 R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-2 R_{1}
\end{aligned} \quad \Rightarrow A \sim\left[\begin{array}{ccc}
3 & 2 & 1 \\
0 & -1 & 1 \\
0 & -2 & 2
\end{array}\right]
$$

The above matrix is in echelon form and has two non zero lows

$$
\therefore \operatorname{Rank} \text { of } A=\rho[A]=02
$$

2b) Find all the Eigen values and corresponding Eigen vectors of $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & -3\end{array}\right]$
Solution: The characteristic equation is $|A-\lambda|=0$

$$
\begin{gathered}
\left|\begin{array}{ccc}
(-1-\lambda) & 1 & 2 \\
0 & (-2-\lambda) & -1 \\
0 & 0 & (-3-\lambda)
\end{array}\right|=0 \\
(-1-\lambda)[(-2-\lambda)(-3-\lambda)-0]-1[0]+2[0]=0 \\
(-1-\lambda)\left[6+2 \lambda+3 \lambda+\lambda^{2}\right]=0 \\
-6-5 \lambda-\lambda^{2}-6 \lambda-5 \lambda^{2}-\lambda^{3}=0 \\
-\lambda^{3}-6 \lambda^{2}-11 \lambda-6=0 \\
\lambda^{3}+6 \lambda^{2}+11 \lambda+6=0
\end{gathered}
$$

$\lambda=-1,-2,-3$ are the Eigen values of A

Eigen vectors are found from the equation

$$
\left.\left.\begin{array}{cc}
{\left[\begin{array}{cc}
A-\lambda I][X]=[0] \\
(-1-\lambda) & 1 \\
2 \\
0 & (-2-\lambda) \\
0 & 0 \\
(-3-\lambda)
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\Rightarrow \quad & (-1-\lambda) x+y+2 z=0 \\
0 x+(-2-\lambda) y-z=0 \\
(-3-\lambda) z=0
\end{array}\right\}-\otimes\right)
$$

Case (i): When $\lambda=-1$, we have $\varphi+2 z=0$

$$
\begin{array}{r}
-y-z=0 \\
-2 z=0
\end{array}
$$

Hex $z=0, y=0$ and let $x=k$, arbitrary,
\therefore Eigen vector when $\lambda=-1$ is $x_{1}=\left[\begin{array}{c}k \\ 0 \\ 0\end{array}\right]$
can(ii):
When $\lambda=-2$, we have

$$
\begin{align*}
x+y+2 z & =0 \tag{4}\\
-z & =0 \tag{5}\\
-z & =0 \tag{6}
\end{align*}
$$

Hex $z=0$, Let $y=k_{1}$ then from (4) $\Rightarrow x+k_{1}+0=0 \Rightarrow x=-k_{1}$
\therefore Eigen vector when $\lambda=-2$ is

$$
x_{2}=\left[\begin{array}{r}
-k_{1} \\
k_{1} \\
0
\end{array}\right] .
$$

Care(iii): When $\lambda=-3$, we have

$$
\begin{array}{r}
2 x+y+2 z=0 \\
y-z=0 \\
0=0 \tag{9}
\end{array}
$$

Let $z=k$, arbitral
From (8), $y-z=0 \Rightarrow y=z=k$
From (f), $2 x+k+2 x=0$

$$
2 x=-3 k, \quad x=-3 / 2 k
$$

\therefore Eigen vector when $\lambda=-3$ is

$$
x_{3}=\left[\begin{array}{c}
-3 / 2 k \\
k \\
k
\end{array}\right]
$$

2.c) Solve the system of lincas equations

$$
3 x+y-z=3: \quad 2 x-8 y+z=-5: \quad x-2 y+9 z=8
$$

by Cacus elimination method

Solution: Above system of equations can be written in the matrix form $A X=B$

$$
\begin{aligned}
{\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & -8 & 1 \\
1 & -2 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right] \\
A & =B
\end{aligned}
$$

The augmented matrix is

$$
\begin{aligned}
& {[A: B]=\left[\begin{array}{ccccc}
3 & 1 & -1 & : & 3 \\
2 & -8 & 1 & : & -5 \\
1 & -2 & 9 & : & 8
\end{array}\right]} \\
& R_{1} \leftrightarrow R_{3}, \quad[A: B] \sim\left[\begin{array}{ccc:c}
1 & -2 & 9 & 8 \\
2 & -8 & 1 & -5 \\
3 & 1 & -1 & 3
\end{array}\right] \\
& \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1},
\end{array} \quad[A: B] \sim\left[\begin{array}{ccc:}
1 & -2 & 9: 8 \\
0 & -4 & -17:-21 \\
0 & 7 & -28:-21
\end{array}\right] \\
& \begin{array}{r}
R_{3} \rightarrow 4 R_{3}+7 R_{2}, \\
{[A: B] \sim\left[\begin{array}{ccc:c}
1 & -2 & 9 & 8 \\
0 & -4 & -17: & -21 \\
0 & 0 & -231: & -231
\end{array}\right]}
\end{array}
\end{aligned}
$$

Here matrix A is in upper triangular form Now equations are

$$
\begin{align*}
x-2 y+9 z & =8 \tag{1}\\
-44-17 z & =-21 \tag{2}\\
-231 z & =-231 \tag{3}\\
z & =1
\end{align*}
$$

Equation (2) $\Rightarrow \quad-44-17=-21 \Rightarrow y=1$
Equation (1) $\Rightarrow \quad x-2+9=8 \quad \Rightarrow \quad x=1$

$$
\therefore x=1, y=1, \quad z=1
$$

Module-02
3.a) Find a real root of $x \log _{10} x-1-2=0$, correct to 3 decimal places lying in the interval $(2,3)$ by using Regula-Falsi method.

SO19: Let $f(x)=x \log _{10} x-1.2$
Here $f(2)=-0.6$ and $f(3)=0.23>0$
\therefore root lies in $(2,3)$ and root is in the neighbourhood of 3 . Let us find 'áand ' b ' for applying the method such that $(b-a)$ is small enough.

$$
\begin{aligned}
& f(2.7)=2.7 \log _{10}(2.7)-1.2=-0.0353 \\
& f(2.8)=2.8 \log _{10}(2.8)-1.2=0.052
\end{aligned}
$$

\therefore Root lies in $(2.7,2.8)$

$$
\therefore a=2.7, \quad b=2.8
$$

I'iteration: $\quad x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$

$$
\begin{aligned}
& x_{1}=\frac{2.7 f(2.8)-2.8 f(2.7)}{f(2.8)-f(2.7)} \\
& x_{1}=\frac{2.7(0.052)-2.8(-0.0353)}{0.052+0.0353}=2.7404
\end{aligned}
$$

Now $f\left(x_{1}\right)=f(2.7404)=2.7404 \cdot \log _{10}(2-7404)-1.2$

$$
=-0.00021<0
$$

\therefore Root lies in $(2.7404,2.8)$

$$
a=2.740 \mathrm{u} \quad b=2.8
$$

II iteration:

$$
\begin{aligned}
& x_{2}=\frac{a f(b)-b f(a)}{f(b)-f(a)}=\frac{2.7404 f(2.8)-2.8 f(2-5))}{f(2-8)-f(2-7404)} \\
& x_{2}=2.7406
\end{aligned}
$$

\therefore Required not $x=2.7404$
3.b) Use an appropriate interpolation formula to compute $f(2.18)$ for the following data

x	1.7	1.8	1.9	2	2.1	2.2
$f(x)$	5.474	6.050	6.686	7.389	8.166	9.025

Solution; Here $x=2.18$ is near the end value 2.2
Hence Newton's backcuard interpolation formula is appropriate
The backward difference table is as follows

x	y	∇y	$\nabla^{2} y$	$\nabla^{3} y$	$\nabla^{4} y$	$\nabla^{5} y$
1.7	5.474	0.576	0.06			
1.8	6.050	0.636	0.067	007	0	
1.9	6.686	0.703	0.074	0.007	0.001	
2	7.389	0.777	0.001			
2.1	8.166	0.859	0.082	0.008		
2.2	9.025					

Hex $\quad y_{n}=9.025, \quad \nabla y_{n}=0.859 \quad \nabla^{2} y_{n}=0.082, \quad \nabla^{3} y_{n}=0.008$

$$
\nabla^{4} \varphi_{n}=0.001, \nabla^{5} y_{n}=0.001
$$

By Newton's Backcuard interpolation formula

$$
\begin{aligned}
y=f(x)= & \varphi_{n}+\gamma \nabla u_{n}+\frac{\gamma(\gamma+1)}{2!} \nabla^{2} \varphi_{n}+\frac{\gamma(\gamma+1)(\gamma+2)}{3!} \nabla^{3} \varphi_{n} \\
& +\frac{\gamma(\gamma+1)(\gamma+2)(\gamma+3)}{4!} \nabla^{4} \varphi_{n}+\frac{\gamma(\gamma+1)(\gamma+2)(\gamma+3)(\gamma+4)}{5!} \nabla^{5} \varphi_{n}
\end{aligned}
$$

Where $r=\frac{x-x_{n}}{h}=\frac{2.18-2.2}{0.1}=-0.2$

$$
\begin{aligned}
\therefore= & f(2.18)= \\
& +\frac{(-0.2)(-0.2+1)(-0.2+2)}{6}(0.008) \\
& +\frac{(-0.2)(-0.2+1)(-0.2+2)(-0.2+3)}{24}(0.001) \\
& +\frac{(-0.2)(-0.2+1)(-0.2+2)(-0.2+3)(-0.2+4)}{120}(0.001) \\
= & 9.025-0.1718-0.00656-0.000384+0.0004328 \\
& -0.0172 \\
f(2.18)= & 8.8466 \\
\therefore & f(2.18)=8.8466
\end{aligned}
$$

3.c) Use iNeddle's rule to evaluate $\int_{-\pi / 2}^{\pi / 2} \cos x d x$ by dividing $[-\pi / 2, \pi / 2]$ into 6 equal parts
Solution: $a=-\pi / 2, b=\pi / 2, n=6$. Let $y=\cos x$
Lengthy each pact, $h=\frac{b-a}{n}=\frac{\pi / 2+\pi / 2}{6}=\frac{\pi}{6}=30^{\circ}$
The values of x and $y=\cos x$ are given by

Nedale's, rule is given by

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{10} \sum_{i=0}^{n} k \varphi_{i} \\
\therefore \int_{-\pi / 2}^{\pi / 2} \cos x d x & =\frac{3 h}{10} \sum_{i=0}^{6} k \mu_{i} \\
& =\frac{3 h}{10}\left[k \varphi_{0}+k \varphi_{1}+k \mu_{2}+k \mu_{3}+k \varphi_{4}+k \varphi_{5}+k \varphi_{6}\right] \\
& =\frac{3 h}{10}\left[\varphi_{0}+5 \varphi_{1}+\varphi_{2}+6 \varphi_{3}+\varphi_{4}+5 \varphi_{5}+\varphi_{6}\right] \\
& =\frac{3(\pi / 6)}{10}[0+5(0.5)+0.8660+6+0.8660 \\
& =12.0011
\end{aligned}
$$

4. a) Find a real root of the equation $x^{3}+x^{2}+3 x+4=0$ neas $x=-1$ correct to four decimal places, by using Newton - Raphson method.

Solution: Let $f(x)=x^{3}+x^{2}+3 x+4$.
We have to find the root meas $x=-1$.
\therefore Let $x_{0}=-1$. Also $f^{\prime}(x)=3 x^{2}+2 x+3$
By Newton-Raphson formula.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

I-iteration:

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=-1-\frac{f(-1)}{f^{\prime}(-1)}=-1-\frac{1}{3-2+3}=-1.25
$$

II-iteration:

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=-1.25-\frac{f(-1.25)}{f^{\prime}(-1.25)} \\
& =-1.25-\frac{\left[(-1.25)^{3}+(-1.25)^{2}+3(-1.25)+4\right]}{\left[3(-1.25]^{2}+2(-1.25)+3\right]} \\
x_{2} & =-1.2229
\end{aligned}
$$

III-iteration.

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=-1.2229-\frac{f(-1.2229)}{f^{\prime}(-1.2229)} \\
& =-1.2229-\frac{\left[(-1.2229)^{3}+(-1.2229)^{2}+3(-1.2229)+4\right]}{\left[3(-1.2229)^{2}+2(-1.2229)+3\right]} \\
x_{3} & =-1.2229
\end{aligned}
$$

\therefore Required loot is $x=-1.2229$
4.b) Use an appropriate interpolation formula to compute $f(42)$ for the following data

x	40	50	60	70	80	90
$f(x)$	184	204	226	250	276	304

Here we shave find $f(42)$ using Newton's forward interpolation formula.

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
$x_{0}=40$	$y_{0}=184$	$\Delta y_{0}=20$	$\Delta^{2} y_{0}=2$	Δ
$x_{1}=50$	$y_{1}=204$	$\Delta y_{1}=22$	$\Delta^{2} y_{1}=2$	$\Delta^{3}=0$
$x_{2}=60$	$y_{2}=226$	$\Delta y_{2}=24$	$\Delta^{2} y_{2}=2$	$\Delta^{3} y_{2}=0$
$x_{3}=70$	$y_{3}=250$	$\Delta y_{3}=26$	$\Delta^{2} y_{3}=2$	
$x_{4}=80$	$y_{4}=276$	$\Delta y_{4}=28$		
$x_{5}=90$	$y_{5}=304$			

We have Newton's forward interpolation formula

$$
y=f(x)=y_{0}+r \Delta y_{0}+\frac{\gamma(r-1)}{2!} \Delta^{2} y_{0}+\cdots \cdot
$$

When $\quad r=\frac{x-x_{0}}{h}=\frac{42-40}{10}=0.2$

$$
\begin{aligned}
y=f(42) & =184+(0.2)(20)+\frac{(0.2)(0.2-1) 2}{2} \\
& =187.84 \\
\therefore f(42) & =187.84
\end{aligned}
$$

4.c) Using simpson's $\frac{1}{3}^{\text {rd }}$ rule, evaluate $\int_{0}^{3} \frac{d x}{(1+x)^{2}}$ by taking 6 equidistant ordinates
Solution: Here $a=0, b=3, n=6$.

$$
\therefore h=\frac{b-a}{n}=\frac{3-0}{6}=0.5 \text {. Let } y=\frac{1}{(1+x)^{2}}
$$

The value of x and y are as follows

By simpson's $\frac{1}{3}$ rd rule

$$
\left.\begin{array}{l}
\int_{a}^{b} y d x
\end{array}=\frac{h}{3}\left[\left(y_{0}+\varphi_{n}\right)+4\left(\varphi_{1}+\varphi_{3}+\cdots\right)+2\left(\varphi_{2}+y_{4}+\cdots\right)\right]\right] \begin{aligned}
& \int_{0}^{3} \frac{d x}{(1+x)^{2}}=\frac{0.5}{3}\left[\left(y_{0}+y_{6}\right)+4\left(\varphi_{1}+\varphi_{3}+y_{5}\right)+2\left(\varphi_{2}+\varphi_{4}\right)\right] \\
&=\frac{0.5}{3}\left[(1+1 / 16)+4\left(4 / 9+4 / 25+\frac{4}{49}\right)+2(1 / 4+1 / 9)\right] \\
&=\frac{0.5}{3}[1.0625+0.6860 * 4+0.7222] \\
&=0.7547 \\
& \therefore \int_{0}^{3} \frac{d x}{(1+x)^{2}}=0.7547
\end{aligned}
$$

Module -03
5.a) Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}-2 y=0$

Solution: We have $\left(D^{3}-3 x-2\right) y=0$
A.E is $\quad m^{3}-3 m-2=0$.
$m=-1$ is the first root by inspection

$$
m = - 1 \longdiv { \begin{array} { c c c c }
{ 1 } & { 0 } & { - 3 } & { - 2 } \\
{ 0 } & { - 1 } & { 2 } & { 2 } \\
{ \hline 1 } & { - 1 } & { - 2 } & { 0 } \\
{ \hline }
\end{array} }
$$

by synthetic division.
\therefore Equation is $m^{2}-m-2=0 \Rightarrow m=-1,-2$

$$
\therefore y=\left(c_{1}+c_{2} x\right) e^{-x}+e_{3} e^{-2 x}
$$

5.b) Solve $\left(A^{2}-70+10\right) y=\left(1+e^{x}\right)^{2}$
$A D E$ is $\left(m^{2}-7 m+10\right)=0 \quad \therefore m=2,5$

$$
\therefore \text { COT } \quad y_{c}=c_{1} e^{2 x}+c_{2} e^{5 x}
$$

$$
\begin{aligned}
& \text { P.I. (Yo): Now }\left(D^{2}-70+10\right) y=\left(1+e^{x}\right)^{2}=1+2 e^{x}+e^{2 x} \\
& 2 \varphi_{p}=\frac{1}{A^{2}-7 D+10}+2 \frac{e^{x}}{\theta^{2}-70+10}+\frac{e^{2 x}}{D^{2}-70+10}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But denominator }=0 \\
& =\frac{1}{10}+\frac{2 e^{x}}{(1-7+10)}+\frac{x e^{2 x}}{220-7} \\
& =\frac{1}{10}+\frac{2 e^{x}}{4}+\frac{x e^{2 x}}{2(2)-7} \\
& y_{p}=\frac{1}{10}+\frac{e^{x}}{2}-\frac{x e^{2 x}}{3}
\end{aligned}
$$

$\therefore G . s$ is $\quad y=y_{c}+y_{p}$

$$
y=c_{1} e^{2 x}+c_{2} e^{5 x}+\frac{1}{10}+\frac{e^{x}}{2}-\frac{x e^{2 x}}{3}
$$

5.c) Solve $\left(\theta^{2}+2 \theta+3\right) y=\sin x$

Solution $y=y_{c}+\varphi_{p}=C \cdot F+P \cdot I$
Solution: Y (C.F): Now $\left(\theta^{2}+2 \theta+3\right) \varphi=0$
$A \cdot E$. is $m^{2}+2 m+3=0$

$$
\begin{gathered}
m=-1 \pm 2 i \\
\therefore y_{c}=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
\end{gathered}
$$

Up (P.I): Let $\left(\theta^{2}+2 \theta+3\right) y=\sin x$
$y=\frac{\sin x}{\theta^{2}+2 \theta+3}$, Type (2) When $a=1$
Replace a^{2} by $-a^{2}=-1$

$$
\begin{aligned}
\therefore \varphi_{p} & =\frac{\sin x}{-1+2 \theta+3} \\
& =\frac{\sin x}{2 \theta+2} \times \frac{(2 D-2)}{(2 \Delta-2)} \\
& =\frac{(2 \Delta-2) \sin x}{4 \theta^{2}-4}-\text { Again replace } \\
& =\frac{(2 \theta-2) \sin x}{4(-1)-4} \\
& =\frac{2 \Delta \sin x-2 \sin x}{-8} \\
\varphi_{p} & =\frac{2 \cos x-2 \sin x}{-8}=\frac{1}{4}[\sin x-\cos x]
\end{aligned}
$$

\therefore GUS. $\quad \varphi=\mu_{c}+\varphi_{p}$

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{4}[\sin x-\cos x]
$$

6.a) Solve $\left(D^{3}-2 A^{2}+4 \theta-8\right) y=0$

Solutic: Auxilary Equation is $m^{3}-2 m^{2}+4 m-8=0$

$$
\begin{aligned}
& m^{2}(m-2)+4(m-2)=0 \\
& (m-2)\left(m^{2}+4\right)=0 \\
& m=2, m^{2}=-4 \\
& m=2, \quad m= \pm 2 i
\end{aligned}
$$

$\therefore y=c_{1} e^{2 x}+c_{2} \cos 2 x+c_{3} \sin 2 x$ is the $g . s$.
6.b) Solve $\frac{d^{2} y}{d x^{2}}-4 y=\cosh (2 x-1)+3^{x}$.

Solufice: G.s. $y=\varphi_{c}+\varphi_{p}=c_{0} F+p_{0} I$
COF.(yc): Let $\frac{d^{2} y}{d x^{2}}-u y=0 \Rightarrow\left(\theta^{2}-4\right) y=0$

$$
\begin{aligned}
& A \cdot E \text { is } m^{2}-u=0 \Rightarrow m=2,-2 \\
& \therefore y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}
\end{aligned}
$$

P. I. (YP): Now $\left(D^{2}-4\right) y=\cosh (2 x-1)+3^{x}$

$$
\begin{align*}
& =\frac{1}{2}\left[e^{2 x-1}+e^{-(2 x-1)}\right]+3^{x} \\
\varphi_{p} & =\frac{1}{2}\left[\frac{e^{2 x-1}}{\theta^{2}-4}+\frac{e^{-(2 x-1)}}{\theta^{2}-4}\right]+\frac{3^{x}}{\theta^{2}-4} \\
y_{p} & =\frac{1}{2}\left[4 p_{1}+4 p_{2}\right]+4 p_{3} \tag{1}
\end{align*}
$$

Now

$$
\begin{aligned}
& y_{p_{1}}=\frac{e^{2 x-1}}{D^{2}-4}, \\
&=x e^{2 x-1} \\
& \begin{array}{l}
\text { Type (1) } a=2 \\
\text { Relaue i but } D r=0
\end{array} \\
& \text { But }
\end{aligned}
$$

$$
\text { Replace of by } a=2 \text {. }
$$

$$
\begin{array}{ll}
Y p_{2}=\frac{e^{-(2 x-1)},}{\Delta^{2}-u}, \begin{array}{l}
\text { TypeD, } a=-2 \\
\text { Replace } \omega \text { by } a=-2 \\
\text { But } D r=0
\end{array} \\
\varphi_{p_{2}}=x \frac{\bar{e}^{(2 x-1)}}{2 \theta}=\frac{x \bar{e}^{-(2 x-1)}}{-4}, \text { Replace } \hat{\theta} \text { by } a=-2
\end{array}
$$

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
4 p_{3} & =\frac{3^{x}}{A^{2}-4} \\
=\frac{e^{\log 3^{x}}}{\theta^{2}-u}=\frac{e^{(\log 3) x}}{A^{2}-4}, & \text { Type (1) } a=\log 3 \\
4_{p_{3}} & =\frac{e^{(\log 3) x}}{(\log 3)^{2}-4} \\
4 p_{3} & =\frac{3^{x}}{(\log 3)^{2}-4}
\end{aligned} \quad \text { Replace } 10 \text { by } \log 3
\end{aligned}
$$

\therefore Equation (1) is $\quad \varphi_{p}=1 / 2\left(\varphi p_{1}+\varphi_{p_{2}}\right)+\varphi p_{3}$

$$
y_{p}=\frac{x}{8} e^{2 x-1}-\frac{x}{8} e^{-(2 x-1)}+\frac{3^{x}}{(\log x)^{2}-4}
$$

\therefore GS. $\quad y=y_{c}+4 p$

$$
\varphi=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{x}{8} e^{2 x-1}-\frac{x}{8} e^{-(2 x-1)}+\frac{3^{x}}{(\log x)^{2}-4}
$$

6c) Solve $\left(D^{2}+a^{2}\right) y=\cos a x$
Solution: $\quad G . s . \quad y=4_{c}+4_{p}$
Lc: Let $\left(\omega^{2}+a^{2}\right) \varphi=0$
ARE is $m^{2}+a^{2}=0 \Rightarrow m= \pm a i$

$$
y_{c}=c_{1} \cos a x+c_{2} \sin a x
$$

P.I. (YP): Let $\left(2^{2}+a^{2}\right) y=\cos a x$

Type (2) Replace A^{2} by $-a^{2}$
But denominator is zeno

$$
\begin{aligned}
& \therefore y_{p}= \frac{x \cos x}{2 x}=\frac{x}{2} \int \cos x x d x \\
& \varphi_{p}=\frac{x}{2 a} \sin a x \\
& \therefore \text { G.s. } y=4_{c}+y_{p}=c_{1} \cos a x+c_{2} \sin a x+\frac{x}{2 a} \sin a x .
\end{aligned}
$$

Module -04
7.a) Form the partial differential equation by eliminating the arbitrary constants from

$$
\begin{equation*}
2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \tag{1}
\end{equation*}
$$

Solutions Let $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
differentiate (1) partially w.r-1 x and y

$$
\begin{align*}
& 2 \frac{\partial z}{\partial x}=\frac{2 x}{a^{2}}+0 \Rightarrow \frac{\partial z}{\partial x}=\frac{x}{a^{2}} \tag{2}\\
& 2 \frac{\partial z}{\partial y}=0+\frac{2 y}{b^{2}} \Rightarrow \frac{\partial z}{\partial y}=4 / b^{2} \tag{3}
\end{align*}
$$

Use (2) and (3) in Equation (1)

$$
2 z=x\left(\frac{x}{a^{2}}\right)+y\left(\frac{y}{b^{2}}\right)
$$

$2 z=x\left(\frac{\partial z}{\partial x}\right)+4\left(\frac{\partial z}{\partial y}\right)$ is the required partial differential equation.
7.b) Form the partial differential eqnation by eliminating the arbitrary function from

$$
\begin{equation*}
z=f(4+2 x)+g(y-3 x) \tag{1}
\end{equation*}
$$

Solution: Let $z=f(y+2 x)+g(y-3 x)$
differentiate $\varepsilon g^{2}(1)$ partially w.r-t x and y

$$
\begin{align*}
& \frac{\partial z}{\partial x}=p=f^{\prime}(4+2 x) \cdot 2-3 g^{\prime}(4-3 x) \\
& \frac{\partial z}{\partial y}=q=f^{\prime}(4+2 x)+g^{\prime}(4-3 x) \tag{2}
\end{align*}
$$

Also, $\frac{\partial^{2} z}{\partial x^{2}}=4 f^{\prime \prime}(4+2 x)+9 g^{\prime \prime}(y-3 x)=r$

$$
\begin{align*}
& \frac{\partial^{2} z}{\partial y^{2}}=t=f^{\prime \prime}(4+2 x)+g^{\prime \prime}(y-3 x) \tag{3}\\
& \frac{\partial^{2} z}{\partial x \partial y}=s=2 f^{\prime \prime}(y+2 x)-3 g^{\prime \prime}(y-3 x)
\end{align*}
$$

Now consider $\varepsilon q^{2}(2)+3 \times \varepsilon q^{2}$ (4)

$$
\begin{equation*}
r+3 s=10 f^{\prime \prime}(4+2 x) \tag{5}
\end{equation*}
$$

Again now consider $\varepsilon q^{2}(4)+3 \times \varepsilon q^{2}(3)$

$$
s+3 t=5 f^{\prime \prime}(4+2 x)
$$

Now dividing (5) by (6)

$$
\begin{aligned}
& \frac{\gamma+3 s}{s+3 t}=\frac{10}{5}=2 \\
& \gamma+3 s=2 s+6 t
\end{aligned}
$$

$\gamma+s-6 t=0$ is the required partial differential Equation.
7.c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, for which $\frac{\partial z}{\partial y}=-2 \sin y$ When $x=0$ and $z=0$ when y is an odd multiple of $\pi / 2$.

Solution: Here we first find z by integration and apply the given conditions to determine the arbitrary functions occuring as constant of integration.

$$
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\sin x \cdot \sin y
$$

Integrating w, rt. x treating y as constant

$$
\begin{align*}
\frac{\partial z}{\partial y} & =\int \sin x \sin y d x+f(y) \\
& =-\cos x-\sin y+f(y) \tag{1}
\end{align*}
$$

Integrating w.r.t. y treating x as constant

$$
\begin{align*}
& z=\int-\cos x \sin y d y+\int f(y) d y+g(x) \\
& z=\cos x \cos y+\int f(y) d y+g(x) \tag{2}
\end{align*}
$$

Also, by data, $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=0$

$$
\text { Equation }(1) \Rightarrow \quad-2 \sin y=-\sin y+f(y)
$$

$$
f(4)=-\sin 4
$$

Also $\int f(y) d y=\int-\sin y d y=\cos y$
\therefore Equation (2) is $z=\cos x \cos y+\cos y+g(x)$
Using the condition $z=0$ it $y=(2 n+1) \pi / 2$ in (3) we have,

$$
\begin{aligned}
& 0=\cos x \cdot \cos (2 n+1) \frac{\pi}{2}+\cos (2 n+1) \frac{\pi}{2}+g(x) \\
& 0=0+0+g(x) \Rightarrow g(x)=0
\end{aligned}
$$

Thus the solution of the PDF is

$$
z=\cos x \cos y+\cos y=\cos y(\cos x+1)
$$

8. a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x y+z^{2}, x+y+z\right)=0$
Solution: The above function is in the form $f(u, v)=0$ where $u=x y+z^{2}, \quad v=x+y+z$

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=\varphi+2 z \frac{\partial z}{\partial x}, & \frac{\partial v}{\partial x}=1+\frac{\partial z}{\partial x} \\
\frac{\partial u}{\partial y}=x+2 z \frac{\partial z}{\partial y}, & \frac{\partial v}{\partial y}=1+\frac{\partial z}{\partial y}
\end{array}
$$

Now $f(u, v)=0$
differentiating w.r.t x and y by applying chain rule

$$
\begin{align*}
& \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}=0 \Rightarrow \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}=-\frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \tag{1}\\
& \frac{\partial f}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial y}=0 \Rightarrow \frac{\partial f}{\partial u} \frac{\partial u}{\partial y}=-\frac{\partial f}{\partial v} \frac{\partial v}{\partial y} \tag{2}
\end{align*}
$$

Dividing (1) by (2)

$$
\begin{aligned}
& \frac{\partial u / \partial x}{\partial u / \partial y}=\frac{\partial v / \partial x}{\partial v / \partial y} \\
& \frac{y+2 z \frac{\partial z}{\partial x}}{x+2 z \frac{\partial z}{\partial y}}=\frac{1+\frac{\partial z}{\partial x}}{1+\partial y / \partial y} \\
&\left(1+\frac{\partial z}{\partial y}\right)\left(y+2 z \frac{\partial z}{\partial x}\right)=\left(1+\frac{\partial z}{\partial x}\right)\left(x+2 z \frac{\partial z}{\partial y}\right) \\
& x+2 z \frac{\partial z}{\partial y}+x \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} z \\
&=y+2 z \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} y+2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} z
\end{aligned}
$$

Thus $\frac{\partial z}{\partial x}(x-2 z)-\frac{\partial r}{\partial y}(y-2 z)+(x-y)=0$
(012) $p(x-2 z)-q(y-2 z)+(x-y)=0$
is the required P.D.E.
8.b)

Form the partial differential equation by eliminating the arbitrary functions from

$$
\begin{equation*}
z=x f_{1}(x+y)+f_{2}(x+y) \tag{1}
\end{equation*}
$$

Solution: Differentiating partially w.r.t x and y

$$
\begin{align*}
& \frac{\partial z}{\partial x}=x f_{1}^{\prime}(x+y)+f_{1}(x+y)+t_{2}^{\prime}(x+y) \\
& \frac{\partial z}{\partial y}=x f_{1}^{\prime}(x+y)+f_{2}^{\prime}(x+y) \\
& \frac{\partial^{2} z}{\partial x^{2}}=x f_{1}^{\prime \prime}(x+y)+2 f_{1}^{\prime}(x+y)+t_{2}^{\prime \prime}(x+y) \tag{2}\\
& \frac{\partial^{2} z}{\partial x \partial y}=x f_{1}^{\prime \prime}(x+y)+f_{1}^{\prime}(x+y)+t_{2}^{\prime \prime}(x+y) \tag{3}\\
& \frac{\partial^{2} z}{\partial y^{2}}=x f_{1}^{\prime \prime}(x+y)+t_{2}^{\prime \prime}(x+y) \tag{4}
\end{align*}
$$

Now using the Res of (4) in (2) as well as in (3),

$$
\begin{align*}
& \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}+2 f_{1}^{\prime}(x+y) \tag{5}\\
& \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y^{2}}+t_{1}^{\prime}(x+y) \tag{6}
\end{align*}
$$

Multiplying (6) by 2 and subtracting from (5),

$$
\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}=-\frac{\partial^{2} z}{\partial y^{2}}
$$

Thus $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0$
is the required $P \cdot O=E$.
8.c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ for which $\frac{\partial z}{\partial x}=\log _{e} x$ When $y=1$ and $z=0$ when $x=1$.

Solution: Since the condition is in terms of $\frac{\partial z}{\partial x}$, we share use the fact that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ and write the given PDE as $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{x}{y}$
Integrating wot y treating x as constant

$$
\begin{equation*}
\frac{\partial z}{\partial x}=x \int \frac{1}{y} d y+f(x)=x \log y+f(x) \tag{1}
\end{equation*}
$$

Integrating w.r-d x treating y as constant

$$
\begin{align*}
& z=\log y \int x d x+\int f(x) d x+g(y) \\
& z=\frac{x^{2}}{2} \log y+\int f(x) d x+g(y) \tag{2}
\end{align*}
$$

By data, $\frac{\partial z}{\partial x}=\log _{e} x$ when $y=1$, Using this in (1)

$$
\log x=x \log 1+f(x) \text { er } f(x)=\log x
$$

Also $\int f(x) d x=\int \log x d x=x \log x-x$
Equation (2) is,

$$
\begin{equation*}
z=\frac{x^{2}}{2} \log y+x \log x-x+g(y) \tag{3}
\end{equation*}
$$

Also by data. $z=0$ when $x=1$, Using this in (3)

$$
0=\frac{1}{2} \log y-1+g(y) \text { (0) } g(y)=1-1 / 2 \log y
$$

Thus the solution is given by

$$
z=\frac{x^{2}}{2} \log y+x \log x-x+1-\log \sqrt{y}
$$

Module -os
9. a) State the axiomatic definition of probability For any two arbitrary events A and B, prove that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Solution: Axiomatic definition of probability:
If S is the sample space and E is the set of all events then to each event A in E we associate a unique real number $P=$ $P(A)$ known as the probability of the event A, if the following axioms are satisfied
(i) $P(s)=1$
(2) For every event A in $E, \quad 0 \leq P(A) \leq 1$
(3) It A_{1}, A_{2}, \ldots. An are mutually exclusive events then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)
$$

Addition Theorem:
If A and B are any two events then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Prof: We prove the result using the following Venn diagram.

From the figure

$$
\begin{aligned}
& A=(A \cap \bar{B}) \cup(A \cap B) \\
& B=(\bar{A} \cap B) \cup(A \cap B)
\end{aligned}
$$

$P(A)=P(A \cap \bar{B})+P(A \cap B)$, since $A \cap \bar{B}$ and $A \cap B$ are disjoint.
$P(B)=P(\bar{A} \cap B)+P(A \cap B)$, since $\bar{A} \cap B$ and $A \cap B$ are disjoint.
Now $P(A)+P(B)=P(A \cap \bar{B})+P(A \cap B)+P(\bar{A} \cap B)$

$$
\begin{array}{r}
+P(A \cap B) \\
P(A)+P(B)=P(A \cup B)+P(A \cap B)
\end{array}
$$

Thus $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
9.b) The probability that a team wins a match is $3 / 5$. If this team play 3 matches in a tournament, what is the probability that the team (i) win and (ii) loose, all the matcher.
Solution: Let w be the event of winning a match by the team.

$$
\begin{aligned}
& p\left(w_{1}\right)=p\left(\omega_{2}\right)=p\left(\omega_{3}\right)=3 / 5 \\
\therefore & p\left(\bar{w}_{1}\right)=p\left(\bar{w}_{2}\right)=p\left(\bar{w}_{3}\right)=1-3 / 5=2 / 5
\end{aligned}
$$

(i) probability of winning all the matches

$$
=p\left(\omega_{1}\right) \cdot p\left(\omega_{2}\right) \cdot p\left(\omega_{3}\right)=\frac{27}{125} .
$$

(ii) Probability of losing all the matches

$$
=P\left(\overline{w_{p}}\right) \cdot P\left(\overline{w_{2}}\right) \cdot P\left(\overline{w_{3}}\right)=\frac{8}{125}
$$

9.c) In an VG claus of a reputed engineering college, 70% are boys and 30% are girls. 5% of boys and 3\% of the girls are irregular to the classes. What is the probability of a student selected at random is irregular to the clauses and what is the probability that the irregular student is a girls?
Solution: probability of selecting a Boy $=P(B)=70 \%=0.7$
Probability of selecting a girl $=P(G)=30 \%=0.3$
Let I be the event of selecting an irregular student

$$
\therefore P(I / B)=5 \%=0.05, \quad P(I / G)=34=0.03
$$

Here,

$$
\begin{aligned}
P(I) & =P(B) \cdot P(I / B)+P(G) \cdot P(I / G) \\
& =(0.7)(0.05)+(0.3)(0.03) \\
& =0.044
\end{aligned}
$$

probability of selecting an irregular student is 0.044.

Next we have to find $P(G / I)$ and by Bayels theorem

$$
\begin{aligned}
P(G / I) & =\frac{P(G) P(I / G)}{P(I)}=\frac{(0.3)(0.03)}{0.044} \\
& =0.2045
\end{aligned}
$$

\therefore probability that the irregular student is a girl is 0.2045 .
10. a) State and prove Bayels theorem

Statement:
Let $A_{1}, A_{2}, A_{3}, \cdots$. An be a set of exhaustive and mutually exclusive events of the sample space S with $P\left(A_{i}\right) \neq 0$ for each i. If A is any other event associated with A_{i},
$A \subset \bigcup_{i=1}^{\hat{1}} A_{i}$ with $P(A) \neq 0$ then

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i}\right) \cdot P\left(A / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A_{1}\right)}
$$

Proof: We have

$$
\begin{aligned}
S & =A_{1} \cup A_{2} \cup A_{3} \cup \cdots \cup A_{n} \text { and } A C S \\
\therefore \quad A & =S \cap A=\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right) \cap A
\end{aligned}
$$

Using distributive law in the Res

$$
A=\left(A_{1} \cap A\right) \cup\left(A_{2} \cap A\right) \cup\left(A_{3} \cap A\right) \cup \cdots \cup\left(A_{\cap} \cap A\right)
$$

Since $A_{i} \cap A$ for $i=1$ to n are mutually exclusive, we have by applying the addition rule of probability

$$
P(A)=P\left(A_{1} \cap A\right)+P\left(A_{2} \cap A\right)+\cdots+P\left(A_{\cap} \cap A\right)
$$

Now applying multiplication rule onto each term in the RHS we have

$$
P(A)=P\left(A_{1}\right) \cdot P\left(A / A_{1}\right)+P\left(A_{2}\right) P\left(A / A_{2}\right)+\cdots+P(A n) \cdot P\left(A / A_{n}\right)
$$

That is

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} p\left(A_{i}\right) P\left(A / A_{i}\right) \tag{1}
\end{equation*}
$$

The conditional probability of A_{i} for any i given A is defined by

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i} \cap A\right)}{P(A)}=\frac{P\left(A_{i}\right) P\left(A / A_{i}\right)}{P(A)}
$$

Using (1) in the denominates of Rites

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i}\right) P\left(A / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A_{1} / A_{i}\right)}
$$

10.b) The chance that a doctor will diagnose a disease correctly is 60%. The chance that a patient will die after correct diagnose is 40% and the chance of death by wrong diagnosis is 70%. If a patient dies, what is the chance that his disease was correctly diagnosed ?
Solution: Let A be the event of correct diagnosis and B be the event of wrong diagnosis $\therefore P(A)=0.6$ and $P(B)=0.4$
Let E be the event that the patient dies.

$$
\therefore P(E / A)=0.4 \text { and } P(E / B)=0.7
$$

we have to find $P(A / E)$ and By Bayes's theorem

$$
\begin{aligned}
& P(A \mid E)= \frac{P(A) \cdot P(E / A)}{P(A) \cdot P(E / A)+P(B) \cdot P(E / B)} \\
&= \frac{(0.6)(0.4)}{(0.6)(0.4)+(0.4)(0.7)}=0.4615 \\
& P(A / E)=0.4615
\end{aligned}
$$

10.c) Three students A, B, C write an entrance examination, their chances of pausing are $1 / 2,1 / 3$ and $1 / 4$ respectively. Find the probability that (i) at least one of them passes (ii) atleart tur of them pares (iii) an of them passes.

Solution: Let E be the event of passing the examination by a student.

$$
\begin{aligned}
& \text { by a } \\
& \therefore P(A)=1 / 2, \quad P(B)=1 / 3, P(C)=1 / 4 \\
& P(\bar{A})=1 / 2, \quad P(\bar{B})=2 / 3, P(\bar{C})=3 / 4 .
\end{aligned}
$$

(i) probability of at least one of them passes $=1$ - probability of none of them passing

$$
=1-1 / 2 \cdot 2 / 3 \cdot 3 / 4=3 / 4
$$

(ii) probability of at least 2 of them passing

$$
\begin{aligned}
= & P(A) \cdot P(B) \cdot P(\bar{C})+P(B) P(C) \cdot P(\bar{A})+P(C) P(A) P(\bar{B}) \\
& +P(A) P(B) P(C) \\
= & \frac{3}{24}+\frac{1}{24}+\frac{2}{26}+\frac{1}{2 u}=7 / 24
\end{aligned}
$$

(iii) Probability of all of them passing

$$
\begin{aligned}
& =p(A) p(B) p(C) \\
& =\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}=\frac{1}{24}
\end{aligned}
$$

