# MODEL QUESTION PAPER <br> Fourth Semester BE Degree (CBCS) Examination 2020-21 

## Additional Mathematics-II [18MATDIP41]

Time: 3 hours
Max Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module - 1

| 1 a) | Find the rank of the following matrix by elementary row transformations $A=\left[\begin{array}{llll} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{array}\right]$ | (6m) |
| :---: | :---: | :---: |
| b) | Solve the following system of equations by Gauss elimination method, $x+y+z=9 ; x-2 y+3 z=8 ; 2 x+y-z=3$. | (7m) |
| c) | Find the eigen values and the corresponding eigen vectors of $A=\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$. | (7m) |
|  | OR |  |
| 2 a) | Find the rank of the following matrix by elementary row transformations $A=\left[\begin{array}{cccc} 0 & 1 & -3 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & -2 & 0 \end{array}\right]$ | (6m) |
| b) | Solve the following system of equations by Gauss elimination method, $2 x+5 y+7 z=52 ; 2 x+y-z=0 ; x+y+z=9$. | (7m) |
| c) | Find the eigen values and the corresponding eigen vectors of $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$. | (7m) |

## Module - 2

| 3 a) | The area of a circle(A) corresponding to diameter (D) is given below. Find the area corresponding to diameter 105 by using an appropriate interpolation. |  |  |  |  |  | (6m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D 80 | 85 | 90 | 95 | 100 |  |  |
|  | A 5026 | 5674 | 6362 | 7088 | 7854 |  |  |
| b) | Find a real root of $x^{3}-2 x-5=0$ correct to three decimal places by Newton Raphson method. |  |  |  |  |  | (7m) |
| c) | Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's $\frac{1}{3}^{\text {rd }}$ rule taking four equal strips. |  |  |  |  |  | (7m) |
|  |  |  |  |  | OR |  |  |
| 4a) | From the following table, find the number of students who have obtained less than 45 marks. |  |  |  |  |  | (6m) |
|  | Marks | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |  |
|  | Students | $31$ | $42$ | $51$ | $35$ | $31$ |  |
| b) | Find the fourth root of 12 correct to three decimal places by Regula -Falsi method |  |  |  |  |  | (7m) |
| c) | Evaluate $\int_{4}^{5.2} \log _{e} x d x$ taking 6 equal strips by using Weddle's rule. |  |  |  |  |  | (7m) |

Module - 3

| $\mathbf{5}$ a) | Solve $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}+6 y=0$. | $(7 \mathrm{~m})$ |
| ---: | :--- | :--- |
| $\mathbf{b )}$ | Solve $y^{\prime \prime}+2 y^{\prime}+y=\cosh \left(\frac{x}{2}\right)$. | $(6 \mathrm{~m})$ |
| c) | Solve $y^{\prime \prime}-4 y^{\prime}+13 y=\cos 2 x . \quad$ OR | $(7 \mathrm{~m})$ |
|  |  | $(7 \mathrm{~m})$ |
| $\mathbf{6 a )}$ | Solve $\left(4 D^{4}-4 D^{3}-23 D^{2}+12 D+36\right) y=0$. | $(6 \mathrm{~m})$ |
| b) | Solve $\left(D^{4}-18 D^{2}+81\right) y=36 e^{3 x}$. | $(7 \mathrm{~m})$ |
| c) | Solve $\left(D^{2}+4\right) y=\sin ^{2} x$. |  |

## Module - 4

| $\mathbf{7 a )}$ | Form a P.D.E. by eliminating the arbitrary constant from the relation <br> $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. | $(7 \mathrm{~m})$ |
| :---: | :--- | :---: |
| $\mathbf{b )}$ | Form a P.D.E. by eliminating the arbitrary function from the relation <br> $z=f(x+y)+g(y+2 x)$ | $(6 \mathrm{~m})$ |
| c) | Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=0$ and $z=0$ when $y$ is <br> an odd multiple of $\frac{\pi}{2}$. | $(7 \mathrm{~m})$ |
|  | OR |  |
| $\mathbf{8 ~ a ) ~}$ | Form a P.D.E. by eliminating the arbitrary function from the relation <br> $z=e^{a x+b y} f(a x-b y)$. | $(7 \mathrm{~m})$ |
| b) | Form a P.D.E. by eliminating the arbitrary function from the relation <br> $\varnothing\left(x y+z^{2}, x+y+z\right)=0$. | $(6 \mathrm{~m})$ |
| c) | Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$ given that when $\mathrm{y}=0 z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$. | $(7 \mathrm{~m})$ |

## Module-5

| 9 a) | State and prove addition theorem of probability. | $(7 \mathrm{~m})$ |
| ---: | :--- | :--- |
| b) | If A and B are independent events, show that the events (i) $\bar{A}$ and $\bar{B}$ (ii) $\bar{A}$ and B <br> (iii) A and $\bar{B}$ are independent. | $(6 \mathrm{~m})$ |
| c) | The probability that 3 students A, B, C solve a problem are $1 / 2,1 / 3,1 / 4$ <br> respectively. If the problem is simultaneously assigned to all of them, what is the <br> probability that the problem is solved? | $(7 \mathrm{~m})$ |
|  | OR | $(7 \mathrm{~m})$ |
| $\mathbf{1 0}$ a) | State and prove Baye's theorem. | $(6 \mathrm{~m})$ |
| b) | Three machines A, B and C produce respectively $60 \%, 30 \%, c 10 \%$ of the total <br> number of items of a factory. The percentage of defective output of these <br> machines are respectively 2\%,3\% and 4\%. An item is selected at random is found <br> defective. Find the probability that the item was produced by machine C. |  |
| c) | A shooter can hit a target in 3 out of 4 shots and another shooter can hit the target <br> in 2 out of 3 shots. Find the probability that the target is being hit (a) when both <br> of then try. (b) By only one shooter. | $(7 \mathrm{~m})$ |

Module-1
1.a) Find the rank of the following matrix by elementary row transformations.

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 1 \\
1 & 3 & 4 & 5
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 1 \\
1 & 3 & 4 & 5
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-2 R_{1}, \quad A \sim\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
R_{3} & \rightarrow R_{3}-R_{1}, & -1 & -3 \\
0 & 1 & 1 & 3
\end{array}\right]
\end{aligned}
$$

The above matrix is in echelon form and has 2 non-zero rows.

$$
\therefore \text { Rank if } A=\rho(A)=2 \text {. }
$$

1.b) Solve the following system of equations by Gauss elimination method

$$
x+y+z=9 ; \quad x-2 y+3 z=8 ; \quad 2 x+y-z=3 .
$$

Solution: The above system can be written in the form of matrix $A X=B$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 3 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
8 \\
3
\end{array}\right]
$$

The augmented matrix of the system is

$$
\begin{aligned}
& {[A: B]=\left[\begin{array}{ccc:c}
1 & 1 & 1: & 9 \\
1 & -2 & 3: & 8 \\
2 & 1 & 1: & 3
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-R_{1}, \quad[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & : 9 \\
0 & -3 & 2 & :-1 \\
R_{3} \rightarrow R_{3}-2 R_{1}, & -1 & -3 & :-15
\end{array}\right] \\
& R_{3} \rightarrow R_{2}+(-3) R_{3}, \quad[A: B] \sim\left[\begin{array}{ccccc}
1 & 1 & 1 & 9 \\
0 & -3 & 2 & : 1 \\
0 & 0 & 11 & : 44
\end{array}\right]
\end{aligned}
$$

$\therefore$ Now equations are $x+y+z=9$

$$
\begin{array}{r}
-3 y+2 z=-1 \\
112=44  \tag{3}\\
z=4
\end{array}
$$

$\therefore$ Equation (2) $\Rightarrow-3 y+8=-1 \quad \Rightarrow y=3$
Equation $(1) \Rightarrow x+3+\xi_{p}=9 \Rightarrow x=2$

$$
\therefore x=2, \quad y=3, \quad z=4 \text {. }
$$

1.c) Find the eigen values and the corresponding eigen rectors of $A=\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$.
Solution: The characteristic equation is $|A-\lambda I|=0$

$$
\begin{aligned}
& \left|\begin{array}{cc}
1-\lambda & 2 \\
5 & 4-\lambda
\end{array}\right|=0 \\
& (1-\lambda)(4-\lambda)-10=0 \\
& \lambda^{2}-5 \lambda-6=0 \\
& \therefore \lambda=6 \text { and } \lambda=-1 \text { are the rigen values }
\end{aligned}
$$

of $A$.

The eigen vectors are found from the equation $[A-\lambda I][X]=[0]$.

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
5 & 4-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

or

$$
\left.\begin{array}{c}
(1-\lambda) x+2 y=0  \tag{8}\\
5 x+(4-\lambda) y=0
\end{array}\right\}
$$

Case (i): Let $\lambda=6$. Equation becomes $-5 x+2 \varphi=0$ and $5 x-2 \varphi=0$
consider $5 x=2 \varphi \Rightarrow \frac{x}{2}=\frac{4}{5}=k$ (or) $x=2 k, y=5 k$ If $k=1$ then $x=2, y=5$
$\therefore$ Eigen rector when $\lambda=6$ is $X_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$
Care(ii): Let $\lambda=-1$ Equation $\otimes$ is $2 x+2 y=0$ and $5 x+5 y=0$
Consider $2 x+2 y=0 \Rightarrow \frac{x}{-1}=\frac{y}{1}=k$ (22) $x=k, y=-k$. If $k=1$ then $x=1, y=-1$
$\therefore$ Eigen vector when $\lambda=-1$ is $X_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Qa) Find the rank of following matrix by reducing into echelon form

$$
A=\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

Solution: $R_{1} \leftrightarrow R_{2}, \quad A \propto\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$

$$
\begin{array}{ll}
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{4} \rightarrow R_{4}-R_{1}, & A \sim
\end{array}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 1 & -3 & -1 \\
0 & 1 & -3 & -1
\end{array}\right]
$$

The above matrix is in echelon form and has 2 non-2ero rows

$$
\therefore \text { Rank of } A=\rho(A)=2
$$

2.b) Solve the following system by Gaves-elimination method, $2 x+5 y+7 z=52 ; 2 x+y-z=0 ; \quad x+y+z=9$
Solution: The matrix form is $A x=B$

$$
\left[\begin{array}{ccc}
2 & 5 & 7 \\
2 & 1 & -1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
52 \\
0 \\
9
\end{array}\right]
$$

The acegmented matrix is

$$
\begin{aligned}
& {[A: B]=\left[\begin{array}{ccc:c}
2 & 5 & 7 & 52 \\
2 & 1 & -1 & 0 \\
1 & 1 & 1 & 9
\end{array}\right]} \\
& R_{1} \Leftrightarrow R_{3}, \quad[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & : 9 \\
2 & 1 & -1 & 0 \\
2 & 5 & 7 & 52
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-2 R_{1} \quad[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
R_{3} \rightarrow R_{3}-2 R_{1}, \quad & -1 & -3 & -18 \\
0 & 3 & 5 & 34
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+3 R_{2} \quad, \quad[A: B] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
0 & -1 & -3 & -18 \\
0 & 0 & -4 & -20
\end{array}\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
x+y+z & =9 \\
-y-3 z & =-18 \\
-4 z & =-20 \Rightarrow z=5
\end{aligned}
$$

$\therefore$ Equation (2) $\Rightarrow-y-15=-18 \Rightarrow y=3$
Equation (1) $\Rightarrow x+3+5=9 \quad \Rightarrow \quad x=1$
2.c) Find the Eigen values and Eigen vectors of

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

Solution: Characteristic equation is $|A-\lambda I|=0$

$$
\begin{gathered}
\left|\begin{array}{ccc}
1-\lambda & 1 & 3 \\
1 & 5-\lambda & 1 \\
3 & 1 & 1-\lambda
\end{array}\right|=0 \\
(1-\lambda)[(5-\lambda)(1-\lambda)-1]-[(1-\lambda)-3]+3[1-3(5-\lambda)]=0 \\
-\lambda^{3}+7 \lambda^{2}-36=0
\end{gathered} \text { (or) } \lambda^{3}-7 \lambda^{2}+36=0
$$

$\therefore \quad \lambda=-2,3,6$ are the Eigen values of $A$.
Eigen vectors are found from $[A-\lambda I][x]=[0]$

$$
\left[\begin{array}{ccc}
1-\lambda & 1 & 3 \\
1 & 5-\lambda & 1 \\
3 & 1 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(or)

$$
\left.\begin{array}{c}
(1-\lambda) x+y+3 z=0  \tag{x}\\
x+(5-\lambda) y+z=0 \\
3 x+y+(1-\lambda) z=0
\end{array}\right\}
$$

Care(i): Let $\lambda=-2$. Equation (2) is

$$
\begin{array}{r}
3 x+y+3 z=0 \\
x+7 y+z=0 \\
3 x+y+3 z=0 \tag{3}
\end{array}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{x}{\left|\begin{array}{ll}
1 & 3 \\
7 & 1
\end{array}\right|}=\frac{-y}{\left|\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right|}=\frac{z}{\left|\begin{array}{ll}
3 & 1 \\
1 & 7
\end{array}\right|} \\
& \frac{x}{-20}=\frac{y}{0}=\frac{z}{20} \quad \text { (or } x=1, y=0, z=-1
\end{aligned}
$$

$\therefore$ Eigen rector when $\lambda=-2$ is $x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
Care(ii): When $\lambda=3$.
Equation is $-2 x+y+3 z=0$

$$
\begin{align*}
& x+2 y+z=0  \tag{6}\\
& 3 x+y-2 z=0
\end{align*}
$$

From (3) 4 (4),

$$
\begin{aligned}
& \frac{x}{\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right|}=\frac{-y}{\left|\begin{array}{cc}
-2 & 3 \\
1 & 1
\end{array}\right|}=\frac{z}{\left|\begin{array}{|c|}
-2 \\
1
\end{array}\right|} \\
& \frac{x}{-5}=\frac{-y}{-5}=\frac{z}{-5}
\end{aligned}
$$

(OR) $x=1, y=-1, z=1$
$\therefore$ Eigen rectus when $\lambda=3 \quad$ is $\quad X_{2}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
Care(iii): When $\lambda=6$
Equation (8) is $-5 x+y+3 z=0$

$$
\begin{align*}
x-y+z & =0  \tag{8}\\
3 x+y-5 z & =0
\end{align*}
$$

From (7) 483 ,

$$
\begin{align*}
& \frac{x}{\left|\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right|}=\frac{-y}{\left|\begin{array}{cc}
-5 & 3 \\
1 & 1
\end{array}\right|}=\frac{z}{\left|\begin{array}{rr}
-5 & 1 \\
1 & -1
\end{array}\right|}  \tag{9}\\
& \frac{x}{1}=\frac{y}{2}=\frac{z}{1}
\end{align*}
$$

$\therefore$ Eigen rectus when $\lambda=6$ is $X_{3}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
Module -2
3 a) The area of a circle (A) corresponding to diameter (v) is given below. Find the area corresponding to diameter 105 using an appropriate interpolation.

| $\theta$ | 80 | 85 | 90 | 95 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | 5026 | 5674 | 6362 | 7088 | 7854 |

Solution Here 105 is near to 100, Newton's backcuard interpolation formula is appropriate. $\theta$ and A correspond to $x$ and $y$.
The backward difference table is

| $x=D$ | $y=A$ | $\nabla y$ | $\nabla^{2} y$ | $\nabla^{3} y$ |
| :---: | :---: | :---: | :---: | :---: |$| \nabla^{4} y$

By Newton's Backward interpolation formula,

$$
\begin{aligned}
y(x) & =y_{n}+\gamma \nabla y_{n}+\frac{\gamma(\gamma+1)}{2!} \nabla^{2} \varphi_{n}+\frac{\gamma(\gamma+1)(\gamma+2)}{3!} \nabla^{3} \varphi_{n}+\cdots \\
r & =\frac{x-x_{n}}{n}=\frac{105-100}{5}=1 \\
\therefore y(105) & =7854+1(766)+\frac{1(2)}{2}(40)+\frac{1(2)(3)}{6}(2)+\frac{(1)(2)(3)(4)}{24} 4 \\
& =7854+766+40+2+4 \\
y(105) & =8666 .
\end{aligned}
$$

The area A when diameter $\theta=105$ is 8666 .
3.b) Find a real root of $x^{3}-2 x-5=0$ correct to the decimal places by using Newton-Raphsun method
Solutica. Let $f(x)=x^{3}-2 x-5$
Now $f(0)=-520, f(1)=-6<0, f(2)=-1<0, f(3)=16>0$
$\therefore$ real root lies in $(2,3)$ and it is near to 2
$\therefore$ Let $x_{0}=2$
Newton Reyphson formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ First iteration is $\quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

$$
=2-\frac{f(2)}{f^{\prime}(2)}=2+\frac{1}{10}=2 \cdot 1
$$

$2^{\text {nd }}$ iteration is

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
x_{2}=2.1-\frac{f(2.1)}{f^{\prime}(2.1)}=2.1-\frac{(2.1)^{3}-2(2.1)-5}{3(2.1)^{2}-2}=2.0946
$$

and

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.0946-\frac{f(2.0946)}{f^{\prime}(2.0946)} \\
& =2.0946-\frac{(2.0946)^{3}-2(2.0946)-5}{3(2.0946)^{2}-2} \\
x_{3} & =2.0946
\end{aligned}
$$

$\therefore$ Required root is $x=2.0946$.
3.c) Find the fourth root of 12 correct
3.c) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using simpsons $1 / 3^{r d}$ rule taking four equal strips.

Solution: Let $a=0, b=1, n=6 \quad \therefore h=\frac{b-a}{n}=\frac{1}{4}$

$$
y=\frac{1}{1+x^{2}}
$$

Now values of $x$ and $y$ are as follows

$$
\begin{aligned}
& \begin{array}{llll|l|l}
x & x_{0}=0 & x_{1}=x_{0}+h & x_{2}=x_{4}+h & x_{3}=x_{2}+h & x_{4}=1 \\
y=1 & y_{0}=1 & =1 / 4 & =1 / 2 & =3 / 4 &
\end{array} \\
& y=\frac{1}{1+x^{2}} \quad y_{0}=\frac{1}{1+x_{0}^{2}} \quad y_{0}=\frac{1}{1+x_{1}^{2}} \\
& =1=16 / 17 \\
& y_{1}=\frac{1}{1+x_{2}^{2}} \quad y_{3}=\frac{1}{1+x_{3}^{2}} \\
& \psi_{u}=\frac{1}{1+x_{u}^{2}} \\
& =1 / 2
\end{aligned}
$$

By simpsons $1 / 3^{r d}$ rule

$$
\begin{aligned}
& \int_{a}^{b} y d x=h / 3\left(\left(y_{0}+\varphi_{n}\right)+4\left(y_{1}+y_{3}+4_{5}+\cdots\right)+2\left(y_{2}+\varphi_{4}+\cdots\right)\right] \\
& \begin{aligned}
\therefore \int_{0}^{1} \frac{1}{1+x^{2}} d x & =\frac{1 / 4}{3}\left[\left(y_{0}+\varphi_{4}\right)+4\left(y_{1}+y_{3}\right)+2\left(y_{2}\right)\right] \\
& =1 / 12\left[(1+1 / 2)+4\left(\frac{16}{17}+\frac{16}{25}\right)+2(4 / 5)\right] \\
& =0.7854 .
\end{aligned}
\end{aligned}
$$

4.a) From the following table, find the number of students who have obtained less than 45 marks.

| Marks | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Students | 31 | 42 | 51 | 35 | 31 |

Solution: We shall reconstitute the given table with $f(x)$ representing the number of students less than $x$ marks.
less than 40 marks 31 students
less than 50 marks 73 students
Less than 60 marks 124 students
Less than to marks 159 students
Less than 80 marks 190 students
We need to find $f(45)$

$$
\begin{array}{cccccc}
\text { We need to find fiLs) } & \Delta^{3} y & \Delta^{4} y \\
x & y=f(x) & \Delta y & \Delta^{2} y & \Delta^{4} y \\
x_{0}=40 & y_{0}=31 & \Delta y_{0}=42 & & \\
50 & 73 & 51 & \Delta^{2} y_{0}=9 & \Delta^{3} y_{0}=-25 & \Delta^{4} y_{0}=37 . \\
60 & 124 & 51 & -16 & 12 & \\
70 & 159 & 35 & -4 & & \\
80 & 190 & 31 & -4 &
\end{array}
$$

By Newton's forward interpolation

$$
\begin{aligned}
& \begin{aligned}
y= & y_{0}+r \Delta y_{0}
\end{aligned}+\frac{\gamma(\gamma-1)}{2!} \Delta^{2} y_{0}+\frac{\gamma(\gamma-1)(r-2)}{3!} \Delta^{3} y_{0}+\frac{\gamma(\gamma-1)(\gamma-2)(\gamma-3)}{4!} \Delta^{4} y_{0} \\
& r=\frac{x-x_{0}}{r}= \frac{45-40}{10}=0.5 \\
& \begin{aligned}
\therefore y=f(u 5)= & 31 \\
& +0.5(42)+\frac{0.5(0.5-1) 9}{2}+\frac{0.5(-0.5)(-1.5)}{6}(-25) \\
& +48
\end{aligned} \\
&
\end{aligned}
$$

$\therefore 48$ students have scored less than 45 marks
4.b) Find the fourth root of 12 correct to three decimal places by Regula-Falsi method
Solution: Let $x=\sqrt[4]{12} \therefore x^{4}=12 \Rightarrow x^{4}-12=0$
$\therefore$ Let $f(x)=x^{4}-12$
$f(0)=-12<0, f(1)=-11<0, f(2)=u>0$
$\therefore$ root lies in $(1,2)$ and it is near to 2
Now $f(1.9)=1.0321>0, f(1.8)=-1.5024<0$
$\therefore$ Root lies in $(1.8,1.9)$
First iteration:

$$
\begin{aligned}
x_{1} & =\frac{a f(b)-b f(a)}{f(b)-f(a)} \\
& =\frac{1.8 f(1.9)+1.9 f(1.8)}{f(1.9)-f(1.8)} \\
x_{1} & =\frac{1.8(1.0321)+1.9(1.5024)}{1.0321+1.5024}=1.8593
\end{aligned}
$$

Now $f\left(x_{1}\right)=f(1.8593)=(1.8593)^{4}-12=-0.0492<0$
$2^{\text {nd }}$ iteration is $x_{2}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$

$$
\begin{aligned}
x_{2} & =\frac{1.8593 f(1.9)-1.9 f(1.8593)}{f(1.9)-\frac{f(1.8593)}{4}} \\
& =\frac{1.8593(1.0321)-1.9(-0.0492)}{1.0321-(-0.0492)}=1.8612
\end{aligned}
$$

Now $\quad f\left(x_{2}\right)=f(1.8612)=(1.8612)^{4}-12=-0.00025<0$
$\therefore$ Root lies in $(1.8612,1.9)$
$3^{\text {rd }}$ iteration is $x_{3}=\frac{1.8612 f(1.9)-1.9 f(1.8612)}{f(1.9)-f(1.8612)}$

$$
\begin{aligned}
& =\frac{1.8612(1.0321)-1.9(-0.00025)}{1.0321-(-0.00025)} \\
x_{3} & =1.8612
\end{aligned}
$$

$\therefore$ Required root is $\quad x=1.8612$
4.c) Evaluate $\int_{4}^{5,2} \log _{e} x d x$ taking 6 Equal strips
by applying Weddle's rule.

$$
\Rightarrow \quad a=4, b=5.2, n=6 \quad \therefore h=\frac{b-a}{n}=\frac{5.2-4}{6}=0.2
$$

The values of $x$ and $y$ are as follows

$$
\begin{aligned}
& x \quad \begin{array}{rlr}
x_{0} & =a & x_{1}=x_{0}+h \\
& =4
\end{array} \\
& x_{2}=x_{1}+n \\
& x_{3}=x_{2}+h \\
& =4 \cdot 2 \\
& =4.4 \\
& =4.6 \\
& y=\log _{e} x \quad y_{0}=\log x_{0} \\
& y_{1}=\log x_{1} \\
& y_{2}=\log x_{2} \\
& y_{3}=\log x_{3} \\
& =1.3863=1.4351=1.4816=1.5261 \\
& x_{4}=x_{3}+h \quad x_{5}=x_{4}+h \\
& x_{6}=x_{5}+h \\
& =4-8 \\
& =5 \\
& =5.2 \\
& \varphi_{u}=\log x_{4} \quad y_{5}=\log x_{5} \\
& y_{6}=\log x_{6} \\
& =1.5686=1.6094 \\
& =1.6487
\end{aligned}
$$

Waddle's rule for $n=6$ is

$$
\begin{aligned}
& \int_{a}^{b} y d x=\frac{3 h}{10}\left[\varphi_{0}+5 \varphi_{1}+\varphi_{2}+6 \varphi_{3}+y_{u}+5 y_{5}+y_{6}\right] \\
& \therefore \int_{4}^{5.2} \log _{e} x d x=\frac{3(0.2)}{10}[1.3863+5(1.435))+1.4816 \\
& +6(1.5261)+1.5686+5(1.6094)+1.6487] \\
& \therefore \int_{u}^{5.2} \log _{e} x d x=1.8279 .
\end{aligned}
$$

Module-3
5.a) Solve $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}+64=0$

Solution: We have $\left(\theta^{3}+6 A^{2}+11 \theta+6\right) y=0$
$\therefore A \cdot E$ is $m^{3}+6 m^{2}+11 m+6=0$
We share find the one loot by inspection
If $m=-1$ then $\left(-D^{3}+6(-1)^{2}+11(-1)+6=0\right.$
$\therefore m=-1$ is one root
Now By synthetre division
$\therefore$ Equation is $m^{2}+5 m+6=0$

$\sqrt[-1]{1}$| 1 | 6 | 11 | 6 |
| :---: | :---: | :---: | :---: |
|  | -1 | -5 | -6 |
| 1 | 5 | +6 | 0 |
| 0 |  |  |  |

$\therefore$ solution is $y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{-3 x}$
5.b) Solve $y^{\prime \prime}+2 y^{\prime}+y=\cosh (x / 2)$

Solution We have $\left(D^{2}+2 \theta+1\right)=\cosh (x / 2)$
$A \cdot E$ - is $\quad m^{2}+2 m+1=0 \Rightarrow m=-1,-1$

$$
\therefore \quad y_{c}=\left(c_{1}+c_{2} x\right) e^{-x}
$$

Now $y_{p}=\frac{\cosh (x / 2)}{D^{2}+20+1}=\frac{1}{2}\left[\frac{e^{x / 2}}{A^{2}+20+1}+\frac{e^{-x / 2}}{D^{2}+2 N+1}\right]$
$T_{\text {ypee } 11, ~} a=1 / k, \quad T_{\text {ype }} 0, a=-1 / 2$
Replace io by $1 / 2$, Replace is by $-1 / 2$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{e^{x / 2}}{1 / 4+1+1}+\frac{e^{-x / 2}}{1 / w^{-1+1}}\right]^{1 / 2} \\
u_{p} & =\frac{2}{9} e^{x / 2}+2 e^{-x / 2}
\end{aligned}
$$

$\therefore$ Complete solution is $y=y_{c}+\varphi_{p}$

$$
y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{2}{9} e^{x / 2}+2 e^{-x / 2}
$$

5.c) Solve $y^{\prime \prime}-4 y^{\prime}+13 y=\cos 2 x$

Solution: We have $\left(x^{2}-4 x+13\right) y=\cos 2 x$
$A \cdot E$ is $\quad m^{2}-4 m+13=0 \Rightarrow m=2 \pm 3 i$

$$
\therefore y_{c}=e^{2 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)
$$

Now $y_{p}=\frac{\cos 2 x}{D^{2}-4 x+13}$ Replace (2) $a=2$

$$
\begin{aligned}
& =\frac{\cos 2 x}{-4-4 x+13}=\frac{\cos 2 x}{9-4 \theta} \times\left(\frac{9+4 x}{9+4 \theta}\right) \\
& =\frac{(9+4 x) \cos 2 x}{81-16 x^{2}}, \text { Replace } x^{2} \text { by }-a^{2}=-4 \\
& =\frac{9 \cos 2 x-8 \sin 2 x}{81-16(-4)}=\frac{9 \cos 2 x-8 \sin 2 x}{145}
\end{aligned}
$$

$\therefore$ Complete solution is $y=\varphi_{c}+\varphi_{p}$

$$
y=e^{2 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+\frac{9 \cos 2 x-8 \sin 2 x}{145}
$$

6 as. Solve $\left(42^{4}-4 \theta^{3}-23 \theta^{2}+12 \theta+36\right) y=0$
Solution: A.E. is $4 m^{4}-4 m^{3}-23 m^{2}+12 m+36=0$
If $m=2$ then $u(2)^{4}-u(2)^{3}-2(2)^{2}+12(2)+36=0$
$\therefore \quad m=2$ is a root by inspection.
Now by synthetic division
$2 \longdiv { \begin{array} { r r r r r } { 4 } & { - 4 } & { - 2 3 } & { 1 2 } & { 3 6 } \\ { } & { 8 } & { 8 } & { - 3 0 } & { - 3 6 } \\ { \hline 4 } & { 4 } & { - 1 5 } & { - 1 8 } & { 0 0 } \end{array} }$

Now $\quad 4 m^{3}+4 m^{2}-15 m-18=0$
Again if $m=2 \Rightarrow u(8)+u(4)-15(2)-18=0$
$m=\Omega$ is a root by inspection.
Again by synthetic division,
$2 \longdiv { 4 } \begin{array} { r r r r } { 4 } & { 4 } & { - 1 5 } & { - 1 8 } \\ { } & { 8 } & { 2 4 } & { 1 8 } \\ { \hline 4 } & { 1 2 } & { 9 } & { 1 0 } \end{array}$

$$
\begin{array}{r}
\Rightarrow \quad 4 m^{2}+12 m+9=0 \\
(2 m+3)^{2}=0 \\
\Rightarrow m=-3 / 2,-3 / 2
\end{array}
$$

$$
\therefore y=\left(c_{1}+c_{2} x\right) e^{2 x}+\left(c_{3}+c_{4} x\right) e^{-3 / 2 x} \text { is the } 9-s .
$$

6.6) Solve $\left(D^{4}-189^{2}+81\right) y=36 e^{3 x}$

Solution $A \cdot E$ is $\quad m^{4}-18 m^{2}+81=0$

$$
\begin{gathered}
\left(m^{2}-9\right)^{2}=0 \text { (or) }((m-3) \\
(m-3)^{2}=0,(m+3)^{2}=0 \\
m=3,3,-3,-3 \\
\therefore y_{c}=\left(c_{1}+c_{2} x\right) e^{3 x}+\left(c_{3}+c_{4} x\right) e^{-3 x}
\end{gathered}
$$

$$
\text { (or) }((m-3)(m+3))^{2}=0
$$

Now $y_{p}=\frac{36 e^{3 x}}{D^{4}-18 A^{2}+81} \quad \begin{aligned} & \text { Type (1) } a=3 \\ & \text { Replace } \theta \text { by } 3\end{aligned}$

$$
\begin{aligned}
& =\frac{36 e^{3 x}}{3^{4}-18(9)+81} \quad \text { But Denominator is } 0 \\
y_{p} & =\frac{x 36 e^{3 x}}{40^{3}-36 x}=\frac{x 36 e^{3 x}}{4(27)-36(3)} \text {, Again } D_{r}=0 \\
\therefore y_{p} & =\frac{36 x^{2} e^{3 x}}{120^{2}-36}=\frac{36 x^{2} e^{3 x}}{12(9)-36}=\frac{x^{2} e^{3 x}}{2}
\end{aligned}
$$

$\therefore$ Complete solution is

$$
\begin{aligned}
& y=4_{c}+4 p \\
& y=\left(c_{1}+c_{2} x\right) e^{3 x}+\left(c_{3}+c_{4} x\right) e^{-3 x}+\frac{x^{2} e^{3 x}}{2}
\end{aligned}
$$

6.c) Solve $\left(\theta^{2}+4\right) y=\sin ^{2} x$

Solution $A D E$ is $m^{2}+4=0 \Rightarrow m= \pm 2 i$

$$
\therefore y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

Also $y_{p}=\frac{\sin ^{2} x}{A^{2}+4}=\frac{1}{2}\left(\frac{1-\cos 2 x}{D^{2}+4}\right)$

$$
=\frac{1}{2}\left[\frac{1}{D^{2}+4}+\left(\frac{-\cos 2 x}{D^{2}+4}\right)\right]=\frac{1}{2}\left(P_{1}+P_{2}\right)
$$

Now $P_{1}=\frac{1}{D^{2}+4} \quad T_{\text {ype (1) }} a=0$. Replace $\alpha$ by 0

$$
P_{1}=\frac{1}{0+\varphi}=\frac{1}{\varphi}
$$

and $P_{2}=\frac{-\cos 2 x}{D^{2}+\varphi}$, Type (2) $a=2$ Replace $D^{2}$ by -4 But denominator is 0

$$
\begin{aligned}
\therefore & P_{2}=-\frac{x \cos 2 x}{2 \theta}=-\frac{x}{2} \int \frac{\cos 2 x}{\theta} d x \\
& P_{2}=\frac{-x \sin 2 x}{4} \\
\therefore \quad \varphi_{P} & =\frac{1}{2}\left(P_{1}+P_{2}\right)=\frac{1}{2}\left[\frac{1}{4}-\frac{x \sin 2 x}{4}\right] \\
\varphi_{p} & =\frac{1}{8}-\frac{x \sin 2 x}{8}
\end{aligned}
$$

$\therefore$ Complete solution is $\varphi=\varphi_{c}+\varphi_{p}$

$$
\varphi=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{8}-\frac{x \sin 2 x}{8} .
$$

Module-U
7.a) form a P.Q.E. by eliminating the arbitrany constant from the relation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Solution

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{1}
\end{equation*}
$$

Differentiate (1) w.r-t $x$ and $y$ partially

$$
\begin{align*}
& \text { Iferentiate (1) }  \tag{2}\\
& \frac{2 x}{a^{2}}+\frac{2 z}{c^{2}} \frac{\partial z}{\partial x}=0 \Rightarrow \frac{x}{a^{2}}+\frac{z}{c^{2}} \frac{\partial z}{\partial x}=0  \tag{3}\\
& \frac{2 \varphi}{b^{2}}+\frac{2 z}{c^{2}} \frac{\partial z}{\partial y}=0 \Rightarrow \frac{4}{b^{2}}+\frac{z}{c^{2}} \frac{\partial z}{\partial y}=0
\end{align*}
$$

Since there are 3 arbitrany constants, we differentiatt further.
dif( (2) partially w.r-t. $x$

$$
\begin{equation*}
\frac{1}{a^{2}}+\frac{1}{c^{2}}\left(\left(\frac{\partial z}{\partial x}\right)^{2}+z \frac{\partial^{2} r}{\partial x^{2}}\right)=0 \tag{u}
\end{equation*}
$$

From (2), $\quad \frac{1}{a^{2}}=-\frac{z}{c^{2} x} \frac{\partial z}{\partial x}$
$\therefore$ Equation (4) is $-\frac{z}{c^{2} x} \frac{\partial z}{\partial x}+\frac{1}{c^{2}}\left(\left(\frac{\partial z}{\partial x}\right)^{2}+2 \frac{\partial^{2} z}{\partial x^{2}}\right)=0$

$$
\begin{aligned}
\frac{z}{x} \frac{\partial z}{\partial x} & =\left(\frac{\partial z}{\partial x}\right)^{2}+z \frac{\partial^{2} z}{\partial x^{2}} \\
\frac{z \frac{\partial z}{\partial x}}{\partial x} & =x\left(\frac{\partial z}{\partial x}\right)^{2}+x z \frac{\partial^{2} z}{\partial x^{2}} \text { is the }
\end{aligned}
$$

requised $P$-dre

If.b) Form a P.D.E. by eliminating arbitrang function from $z=f(y+x)+g(4+2 x)$
Solation Now $\frac{\partial z}{\partial x}=f^{\prime}(x+y)+2 g^{\prime}(y+2 x)$

$$
\begin{align*}
& \frac{\partial z}{\partial y}=f^{\prime}(x+y)+g^{\prime}(y+2 x) \\
& \frac{\partial^{2} z}{\partial x^{2}}=f^{\prime \prime}(x+4)+4 g^{\prime \prime}(y+2 x)  \tag{1}\\
& \frac{\partial^{2} z}{\partial x \partial y}=f^{\prime \prime}(x+y)+2 g^{\prime \prime}(y+2 x)  \tag{2}\\
& \frac{\partial^{2} z}{\partial y^{2}}=f^{\prime \prime}(x+4)+g^{\prime \prime}(y+2 x)  \tag{3}\\
& \partial^{2} \quad \partial^{2} z
\end{align*}
$$

Now (1) - (2) gives $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=2 g^{\prime \prime}(y+2 x)$
and (2)-(3) gives $\frac{\partial^{2} z}{\partial x \partial y}-\frac{\partial^{2} z}{\partial y^{2}}=g^{\prime \prime}(y+2 x)$
Now dividing (4) by (5) we get

$$
\frac{\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}}{\frac{\partial^{2} z}{\partial x \partial y}-\frac{\partial^{2} z}{\partial y^{2}}}=2
$$

(OR) $\frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0$ is the required P. D. E.
f.c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \cdot \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$ When $x=0$ and $z=0$ if $y$ is an odd muctiple of $\pi / 2$
Solutin: $\quad \frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ (0r) $\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\sin x \cdot \sin y$
Integating w.r.t $x$ treating $y$ as constant

$$
\begin{equation*}
\frac{\partial z}{\partial y}=\sin y \int \sin x d x+f(y)=-\sin y \sin x+f(y) \tag{1}
\end{equation*}
$$

Indegrating wir.t $y$ treating $x$ as constant

$$
\begin{align*}
& y=-\cos x \int \sin y d y+\int f(y) d y+g(x) \\
& y=\cos x \cos y+\int f(y) d y+g(x) \tag{2}
\end{align*}
$$

Also by deata $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=0$
$\therefore \varepsilon_{\text {quation (i) }} \Rightarrow-2 \sin y=-\sin y+f(y) \Rightarrow f(y)=-\sin y$
Also $\quad \int f \cos d y=\int-\sin y d y=\cos y$.
$\therefore$ Cequation (2) is $z=\cos x \cos y+\cos y+g(x)$
$2^{\text {nd }}$ condition is $z=0$ if $y=(2 n+1) \pi /$
$\therefore$ Equation (2) is $0=\cos x \cos (2 n+1) * / 2+\cos (2 n+1) \frac{\pi}{2}+g(n)$

$$
0=0+0+g(x) \Rightarrow g(x)=0
$$

$\therefore$ Solution of the P.D.E. is

$$
z=\cos x \cos y+\cos y=\cos y(\cos x+1)
$$

8 a) Form a P.D.E by eliminating arbitray function from $z=e^{a x+b \psi} f(a x-b y)$.
Solution: $\quad z=e^{a x+b y} f(a x-b y)$
Now $\frac{\partial z}{\partial x}=a e^{a x+b y} f^{\prime}(a x-b y)+a e^{a x+b y} f(a x-b y)$
(0v) $\frac{\partial z}{\partial x}=a e^{a x+b y} f^{\prime}(a x-b y)+a z$
Also $\frac{\partial z}{\partial y}=e^{a x+b y} f(a x-b y)(-b)+b e^{a x+b y}$ $f(a x-b y)$

$$
\begin{equation*}
=-b e^{a x+b y} f^{\prime}(a x-b y)+b z \tag{3}
\end{equation*}
$$

Multiplying (2) by ' $b$ ', (3) by ' $a$ ' and adding $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z$ is the required P-D.E.
Q.b) form a P.Q.E by eliminating arbitrary function from $\phi\left(x y+z^{2}, x+y+z\right)=0$
Solution We have by data $\phi(u, v)=0$
where $u=x y+z^{2}$ and $v=x+y+z$

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=y+2 z \frac{\partial z}{\partial x} & \text { and }
\end{array} \quad \frac{\partial v / \partial x=1+\partial z / \partial x}{\frac{\partial u}{\partial y}=x+2 z \frac{\partial z}{\partial y}} \quad \begin{aligned}
& \partial y=1+\partial z / \partial y
\end{aligned}
$$

Let us differentiate (1) w.r.t $x$ and $y$ by applying chain rule

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial x}=0 & \text { (or) } \frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial x}=-\frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial x} \\
\frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial y}=0 & \text { (r) } \frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial y}=-\frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial y}-
\end{array}
$$

Dividing (2) by (3), we get

$$
\begin{aligned}
& \frac{\partial u / \partial x}{\partial u / \partial y}=\frac{\partial v / \partial x}{\partial v / \partial y} \\
& \frac{y+2 z \partial z / \partial x}{x+2 z \partial z / \partial y}=\frac{1+\partial z / \partial x}{1+\partial z / \partial y} \\
y+ & 2 z \frac{\partial z / \partial x}{}+y \frac{\partial z}{\partial y}+2 z \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}=x+2 z \frac{\partial z}{\partial y}+x \frac{\partial z}{\partial x} \\
& +2 z \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \\
\therefore \quad & \frac{\partial z}{\partial x}(x-2 z) \frac{\partial z}{\partial y}(y-2 z)+x-y=0
\end{aligned}
$$

is the required $P-D \cdot E$
8.c) Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$ given that when $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.
Solution Assume the given p.d.e in the form of ODE

$$
\frac{d^{2} w}{d y^{2}}=z
$$

(or) $\frac{d^{2} z}{d y^{2}}-z=0$
(08) $\left(D^{2}-1\right) z=0$
A.E. is $\quad m^{2}-1=0 \quad \Rightarrow m=1,-1$
$\therefore$ Solution of padre is

$$
\begin{equation*}
z=f(x) e^{y}+g(x) e^{-y} \tag{1}
\end{equation*}
$$

Also $\quad \frac{\partial z}{\partial y}=f(x) e^{y}-g(x) e^{-y}$
Given that $z=e^{x}$ when $y=0$ and $\frac{\partial z}{\partial y}=e^{-x}$ when $y=0$.
$\therefore$ Equations (1) \& (2) will become

$$
\begin{align*}
& e^{x}=f(x)+g(x)  \tag{3}\\
& e^{-x}=f(x)-g(x) \tag{4}
\end{align*}
$$

Now (5) $+(4)$ gives $2 f(x)=e^{x}+e^{-x}$

$$
\therefore f(x)=\frac{e^{x}+e^{-x}}{2}=\cosh x
$$

and (3)-(4) gives

$$
\begin{aligned}
g(x) & =\frac{e^{x}-e^{-x}}{2} \\
g(x) & =\sinh x .
\end{aligned}
$$

$\therefore$ Solution is $z=(\cosh x) e^{y}+(\sinh x) e^{y}$.

Module-5
ga) state and prove addition theorem of probability
Solution: statement:
If $A$ and $B$ are any two events of $S$ which are not mutually exclusive then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof: We prove the result using the following Venn diagram.


From the figure, $A=(A \cap \bar{B}) \cup(A \cap B)$

$$
B=(\bar{A} \cap B) \cup(A \cap B)
$$

$\Rightarrow P(A)=P(A \cap \bar{B})+P(A \cap B)$. Since $A \cap \bar{B}$ and
$A \cap B$ are disjoint
$P(B)=P(\bar{A} \cap B)+P(A \cap B)$, since $\bar{A} \cap B$ and $A \cap B$ are disjoint.
$\therefore$ From the axioms of probability

$$
\begin{aligned}
& p(A)+p(B)=p(A \cap \bar{B})+p(A \cap B)+P(\overline{A \cap B})+p(A \cap B) \\
& p(A)+P(B)=p(A \cup B)+p(A \cap B) \\
& \text { Thus } p(A \cup B)=p(A)+P(B)-p(A \cap B)
\end{aligned}
$$

gb). If $A$ and $B$ are independent events, Show that the events
(i) $\bar{A}$ and $\bar{B}$ (ii) $\bar{A}$ and $B$ (iii) $A$ and $\bar{B}$ are independent.
Solution: (9) We have by De-morgan's law

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

Now

$$
\begin{aligned}
P(\bar{A} \cap \bar{B}) & =P(\overline{A \cup B}) \\
& =1-P(A \cup B) \\
& =1-P(A)-P(B)+P(A \cap B) \\
& =1-P(A)-P(B)+P(A) \cdot P(B) \\
& =[1-P(A)][1-P(B)] \\
& =P(\bar{A}) \cdot P(\bar{B})
\end{aligned}
$$

Thus $\bar{A}$ and $\bar{B}$ are independent
(ii) From the figure.

$$
\begin{aligned}
B & =(A \cap B) \cup(\bar{A} \cap B) \\
P(B) & =P(A \cap B)+P(\bar{A} \cap B) \\
P(\bar{A} \cap B) & =P(B)-P(A \cap B)=P(B)-P(A) \cdot P(B) \\
& =P(B)[1-P(A)]=P(B)-P(\bar{A})
\end{aligned}
$$

$\therefore \bar{A}$ and $B$ are independent
(iii) Also from the figure

$$
\begin{aligned}
& A=(A \cap \bar{B}) \cup(A \cap B) \\
& P(A)=P(A \cap \bar{B})+P(A \cap B) \\
& P(A \cap \bar{B})=P(B)-P(A \cap B)=P(B)-P(A) \cdot P(B) \\
& =P(B)(1-P(A)) \\
& =P(B) P(\bar{A})
\end{aligned}
$$

$\therefore A$ and $\bar{B}$ are independent.
9.c) The probability that 3 students $A, B, C$ Solve a problem are $1 / 2,1 / 3,1 / 4$ respectively If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved?

Solution: probability that $A$ can solve the problem $P(A)=1 / 2$ probability that $B$ can solve the problem $P(B)=1 / 3$ Probability that $c$ can solve the problem $p(c)=1 / 4$.
$P($ problem solved $)=1-P($ problem being unsolved by $A, B, C$ )

$$
P(E)=1-P(E)
$$

$P(E)$ is the probability that the problem is not solved

$$
\begin{aligned}
\therefore P(\bar{E}) & =P(\bar{A}) \cdot P(\bar{B}) \cdot P(\bar{C}) \\
& =(1-P(A))(1-P(B))(1-P(C)) \\
& =1 / 2 \cdot 2 / 3 \cdot 3 / 4=1 / 4
\end{aligned}
$$

Hence $P(E)=1-1 / 4=3 / 4$.
probability that the problem is solved is $3 / 4$
10.a) State and prove Bayes's theorem

Solution: Statement: Let $A_{1}, A_{2}, \ldots A_{n}$ be a set of exhaustive, mutually exclusive events of a sample space $S$ with $P\left(A_{i}\right) \neq 0$ for each $i$, If $A$ is any other event associated with $A_{i},\left(A C \bigcup_{i=1}^{n} A_{i}\right)$
with $P(A) \neq 0$ then

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i}\right) P\left(A / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A / A_{i}\right)}
$$

prob: We have, $S=A_{1} \cup A_{2} \cup A_{3} \cup \cdots \cup A_{n}$ and $A C S$

$$
\therefore A=S \cap A=\left(A_{1} \cup A_{2} \cup \cdots A_{n}\right) \cap A
$$

Using distributive law in the Rus

$$
A=\left(A_{1} \cap A\right) \cup\left(A_{2} \cap A\right) \cup \cdots\left(A_{n} \cap A\right)
$$

Since $A_{i} \cap A$ for $i=1$ to $n$ are mutually exclusive, we have by applying the addition rule of probability,

$$
P(A)=P\left(A_{1} \cap A\right)+P\left(A_{2} \cap A\right)+\cdots+P\left(A_{n} \cap A\right)
$$

Now applying multiplication rule onto each term in the RHS,

$$
\begin{gather*}
\text { each term } \\
P(A)=P\left(A_{1}\right) \cdot P\left(A / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(A / A_{2}\right)+\cdots+P\left(A_{n}\right) \cdot P\left(A / A_{n}\right)  \tag{1}\\
P(A)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A_{1} / A_{i}\right)
\end{gather*}
$$

The conditional probability of $A_{i}$ for any $i$ given $A$, is defined by

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i} \cap A\right)}{P(A)}=\frac{P\left(A_{i}\right) \cdot P\left(A / A_{i}\right)}{P(A)}
$$

Using (1),

$$
P\left(A_{i} / A\right)=\frac{P\left(A_{i}\right) \cdot P\left(A / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A / A_{i}\right)}
$$

10.1 $1 /$ I hame machines. 9,13 and $C$ produce respectively (ier) $\%, 3,0 \%, 10 \%$ of the total number of items 11) " factory. 'the percentages of defective oulpul (1), these machines are respectively $3 \%, 3 \%$ and $4 \%$. An item is selected at random and is found defective. Find the probability that the item was produced by Machine $C$.
O)labos: Let $A, B, C$ stand for the events of Selection of an item from machines $A, B, C$.

$$
\begin{aligned}
& \text { Selection of an eterne } \\
& \therefore P(A)=60 \%=0.6, P(B)=30 \%=0.3, P(C)=10 \%=0.1 \\
&
\end{aligned}
$$

Let $A$ be the evert of selection of a defective Item then

$$
\begin{aligned}
& \text { Item then } \\
& P(D / A)=2 \%=0.0 \%, P(D / B)=3 \%=0.03 \\
& P(D / C)=4 \%=0.04 .
\end{aligned}
$$

To find the probability that a selected item is produced from the machine $C$, We need to find $\rho(c / \rho)$.
By Bayes theorem

$$
\begin{aligned}
& \text { Bayes's theorem } \\
& \begin{aligned}
P(C / D) & =\frac{P(C) \cdot P(D / C)}{P(A) \cdot P(D / A)+P(B) \cdot P(D / B)+P(C) \cdot P(D / C)} \\
& =\frac{(0.1)(0.04)}{(0.6)(0.02)+(0.3)(0.03)+(0.1)(0.04)} \\
P(C / B) & =0.16
\end{aligned}
\end{aligned}
$$

$10 . c)$ A shooter can hit a target in 3 out of 4 slots and another shooter can hit the target in 2 out of 3 slots. Find the probability that the target is being hit (a) When both of them try (b) by only one shooter

Solution: Let $S_{1}$ and $S_{2}$ be the events that the shooters 1 and 2 Lit the target.

$$
p\left(s_{1}\right)=3 / 4, \quad P\left(s_{2}\right)=2 / 3
$$

a) When both of them try

$$
p\left(s_{1} \cup s_{2}\right)=p\left(s_{1}\right)+p\left(s_{2}\right)-p\left(s_{1} \cap s_{2}\right)
$$

But $S_{1}$ and $S_{2}$ are independent

$$
\begin{aligned}
& \text { But } s_{1} \text { and } s_{2} \\
& \begin{aligned}
\therefore p\left(s_{1} \cup s_{2}\right) & =p\left(s_{1}\right)+p\left(s_{2}\right)-p\left(s_{1}\right) \cdot p\left(s_{2}\right) \\
& =\frac{3}{4}+2 / 3-\frac{3}{4} \cdot 2 / 3=11 / 12 \\
p\left(s_{1} \cup s_{2}\right) & =11 / 12
\end{aligned}
\end{aligned}
$$

b) By only one shooter

$$
\begin{aligned}
& \therefore p\left[\left(s_{1} \cap \overline{s_{2}}\right) \cup\left(\overline{s_{2}}\right) \cup\left(\bar{s}_{1} \cap s_{2}\right)\right. \\
&\left.=p\left(s_{2}\right)\right] \\
&=p\left(s_{1} \cap \overline{s_{2}}\right)+p\left(\overline{s_{2}}\right)+p\left(\overline{s_{1}} n s_{2}\right) \cdot p\left(s_{2}\right) \\
&=\frac{3}{4} \cdot \frac{1}{3}+\frac{1}{4} \cdot \frac{2}{3} \\
&=5 / 12
\end{aligned}
$$

$\therefore$ Required probability is $5 / 12$.

