MODEL QUESTION PAPER Fourth Semester BE Degree (CBCS) Examination 2020-21

Additional Mathematics-II [18MATDIP41]

Time: 3 hours

Max Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module - 1

1 a)	Find the rank of the following matrix by elementary row transformations	(6m)
	[1 2 3 2]	
	$A = \begin{bmatrix} 2 & 3 & 5 & 1 \end{bmatrix}$.	
	l1 3 4 5]	
b)	Solve the following system of equations by Gauss elimination method,	(7m)
	x + y + z = 9; x - 2y + 3z = 8; 2x + y - z = 3.	
c)	Find the eigen values and the corresponding eigen vectors of $A = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$.	(7m)
	OR	
2 a)	Find the rank of the following matrix by elementary row transformations	(6m)
	$\begin{bmatrix} 0 & 1 & -3 & 2 \end{bmatrix}$	
	$A = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}.$	
b)	Solve the following system of equations by Gauss elimination method,	(7m)
	2x + 5y + 7z = 52; 2x + y - z = 0; x + y + z = 9.	
c)	[1 1 3]	(7m)
	Find the eigen values and the corresponding eigen vectors of $A = \begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.	

Module - 2

3 a)	The area of a circle(A) corresponding to diameter (D) is given below. Find the (6)						(6m)		
	area corresponding to diameter 105 by using an appropriate interpolation.								
	D	80	85	90	95	100			
	Α	5026	5674	6362	7088	7854			
b)	Fine	ł a real roo	t of x^3 -	-2x - 5	$= 0 \operatorname{corr}$	rect to th	ree decimal	places by Newton	(7m)
	Rap	hson meth	od.						
c)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}^{rd}$ rule taking four equal strips.					(7m)			
	OR								
4 a)	From the following table, find the number of students who have obtained less				(6m)				
	than 45 marks.								
		Marks	30-40	40-50	50-60	60-70	70-80		
		Students	31	42	51	35	31		
b)	Find the fourth root of 12 correct to three decimal places by Regula -Falsi method					(7m)			
c)	Evaluate $\int_{4}^{5.2} \log_e x dx$ taking 6 equal strips by using Weddle's rule.				(7m)				

Module – 3

5 a)	Solve $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0.$	(7m)
b)	Solve $y'' + 2y' + y = \cosh\left(\frac{x}{2}\right)$.	(6m)
c)	Solve $y'' - 4y' + 13y = cos2x$.	(7m)
	OR	
6 a)	Solve $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0.$	(7m)
b)	Solve $(D^4 - 18D^2 + 81)y = 36e^{3x}$.	(6m)
c)	Solve $(D^2 + 4)y = \sin^2 x$.	(7m)

7 a)	Form a P.D.E. by eliminating the arbitrary constant from the relation	(7m)
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$	
b)	Form a P.D.E. by eliminating the arbitrary function from the relation	(6m)
	z = f(x+y) + g(y+2x)	
c)	Solve $\frac{\partial^2 z}{\partial x \partial y} = sinxsiny$ for which $\frac{\partial z}{\partial y} = -2siny$ when $x = 0$ and $z = 0$ when y is	(7m)
	an odd multiple of $\frac{\pi}{2}$.	
	OR	
8 a)	Form a P.D.E. by eliminating the arbitrary function from the relation	(7m)
	$z = e^{ax+by}f(ax-by).$	
b)	Form a P.D.E. by eliminating the arbitrary function from the relation	(6m)
	$\phi(xy+z^2, x+y+z) = 0.$	
c)	Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that when y=0 $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.	(7m)

Module-5

9 a)	State and prove addition theorem of probability.	(7m)
b)	If A and B are independent events, show that the events (i) \overline{A} and \overline{B} (ii) \overline{A} and B (iii) A and \overline{B} are independent.	(6m)
c)	The probability that 3 students A, B, C solve a problem are 1/2, 1/3, 1/4 respectively. If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved?	(7m)
	OR	
10 a)	State and prove Baye's theorem.	(7m)
b)	Three machines A, B and C produce respectively 60%, 30%,c10% of the total number of items of a factory. The percentage of defective output of these machines are respectively 2%,3% and 4%. An item is selected at random is found defective. Find the probability that the item was produced by machine C.	(6m)
c)	A shooter can hit a target in 3 out of 4 shots and another shooter can hit the target in 2 out of 3 shots. Find the probability that the target is being hit (a) when both of then try. (b) By only one shooter.	(7m)

Module – 4

Module - 1

1.a) Find the rank of the following matrix by elementary now transformations. $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 2 & 1 & 5 \end{bmatrix}$ Solution: $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 1 \\ 3 & 3 & 5 & 1 \end{bmatrix}$ $R_{2} \rightarrow R_{2} - 2R_{1}, \qquad A \sim \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & -1 & -1 & -3 \\ R_{3} \rightarrow R_{2} - R_{1}, \qquad & 0 & 1 & 1 & 3 \\ \end{pmatrix}$ $R_3 \rightarrow R_3 + R_2$, $A \sim \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -1 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ The above matrix is in echelon form and has 2 non-zero rows. :- ROOK & A = S(A) = 2. 1.6) Solve the following system of equations by Graces elimination method X+y+z=9; x-2y+3z=8; 2x+y-z=3. Solution: The above matting can be written in the form of matrix AX=B $\begin{bmatrix} 1 & 1 & 1 & | & \gamma \\ 1 & -2 & 3 & | & \gamma \\ 1 & -2 & 3 & | & \gamma \\ 2 & -2 & -2 & -2 \\ 3 &$

The augmented matrix of the system is

$$\begin{bmatrix} A:B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1; & 9 \\ 1 & -2 & 3 & : & 8 \\ 2 & 1 & 1: & 3 \end{bmatrix}$$

$$R_{3} \Rightarrow R_{3} - 2R_{1}, \quad \begin{bmatrix} A:B \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & -3 & 2 & : & -1 \\ 0 & -1 & -3 & : & -15 \end{bmatrix}$$

$$R_{3} \Rightarrow R_{2} + (-3)R_{3}, \qquad \begin{bmatrix} A:B \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & -3 & 2 & : & -1 \\ 0 & 0 & 11 & : & 44 \end{bmatrix}$$

$$\therefore \text{ Now equations are } x + y + z = 9 \quad \text{ on } 1 = 2 + 4 \quad \text{ on } 1 = 2 \quad \text{ on } 1$$

1.4 find the eigen values and the corresponding eigen rectors of $A = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$.

Solution: The characteristic equation is $|A-\lambda I|=0$ $\begin{vmatrix} 1-\lambda & 2 \\ 5 & 4-\lambda \end{vmatrix} = 0$ $(1-\lambda)(4-\lambda)-10=0$ $\lambda^2-5\lambda-6=0$ $\Rightarrow \lambda=6$ and $\lambda=-1$ are the eigen values 0b A.

The eigen vectors are found from the equation
$$[A - hE] [X] = [0]$$
.

$$\begin{bmatrix} [-\lambda & 2] \\ 5 & [-\lambda] \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
or $([-\lambda)x + \delta Y = 0$
 $Gx + (U - \lambda)y = 0$

$$Gare(1): Let \lambda = 6 \quad \therefore equation & becomes$$

$$-Gx + \delta Y = 0 \quad and \quad 5x - 2Y = 0$$
Consider $5x = \delta Y = \frac{1}{2} = \frac{1}{2} = E \quad \textcircled{O} \quad x = \delta E, y = 5$

$$\therefore Eigen rectors when \lambda = E \quad is \quad X_1 = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$$

$$Gare(1): Let \lambda = -1 \quad \therefore equation & \textcircled{O} \quad 1s$$

$$dx + \delta Y = 0 \quad and \quad 5x + 5y = 0$$

$$Consider \quad \delta x + 5y = 0 \quad x = \delta + 5x = \frac{1}{5} \end{bmatrix}$$

$$(ase(1): Let \lambda = -1 \quad \therefore Equation & \textcircled{O} \quad 1s$$

$$dx + \delta Y = 0 \quad and \quad 5x + 5y = 0$$

$$Consider \quad \delta x + 5y = 0 \quad x = -\frac{1}{5} = \frac{1}{-1} = \frac{1}{-1}$$

$$dx + y = -Eigen \quad Vector \quad When \quad \gamma = -1 \quad is \quad X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$dx + y = -Eigen \quad Vector \quad When \quad \gamma = -1 \quad is \quad X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$dx + \frac{1}{2} \quad y = -\frac{1}{2} \quad y = \frac{1}{2} \quad y = \frac{1}{2} \quad 0$$

$$Solution: \quad R_1 \in \mathbb{R}_2 \quad A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 3R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{2}$$

$$R_{3} \rightarrow R_{3} - R_{2}$$

$$R_{4} \rightarrow R_{4} - R_{$$

the above matrix is in echelon form and has 2 non-zero nows - Rank of A= S(A)=2

2.6> Solve the following system by Graces -elimination method 2x+5y+7z=52; 2x+y-z=0; x+y+z=9 solution: The matrix form AX= B ĵs $\begin{bmatrix} 2 & 5 & 7 \\ 2 & 1 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 52 \\ 0 \\ 7 \\ 9 \end{bmatrix}$ augmented matrix is $[A:B] = \begin{bmatrix} 2 & 5 & 7 & 52 \\ 2 & 1 & -1 & 0 \\ 1 & 1 & 1 & q \end{bmatrix}$ The augmented $R_1 = R_3$ [A:B] $\sim \begin{bmatrix} 1 & 1 & 1 & : 9 \\ 2 & 1 & -1 & : 0 \end{bmatrix}$ $R_2 \rightarrow R_3 - 2R_1$ [A:B] ~ [1 1 1 :9 $R_3 \rightarrow R_3 - 2R_1$ [A:B] ~ [0 -1 -3 :-18 0 3 5 : 34 $R_3 \rightarrow R_3 + 3R_2$, $[A:B] \sim \begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & -1 & -3 & : & -18 \\ 0 & 0 & -4 & : & -20 \end{bmatrix}$ +y+z=9 -0 -y-3z=-18 -0 We have x+y+z=9 -42=-20 =1 [2=5] -- Equation 2 - y-15=-18 =1 [y=3] Equation () = 7+3+5=9 =) Tr=

From (3) + (2),
$$\begin{vmatrix} \chi \\ 1 & 3 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = \begin{vmatrix} z \\ 1 & 2 \end{vmatrix}$$

 $\frac{\chi}{2} = -\frac{y}{3} = \frac{z}{5}$
(OP) $\chi = 1, \ y = -1, \ z = 1$
 \therefore Eigen vertus when $\eta = 3$ is $\chi_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
(are(ii)): When $\eta = 6$
Equation (2) is $-5\chi + y + 3z = 0$ -6
 $\chi - y + z = 0$ -6
 $\chi - y + z = 0$ -6
From (2) $\chi = \frac{\chi}{1} = \frac{-y}{15} = \frac{z}{15}$
 $\frac{\chi}{1} = \frac{-y}{2} = \frac{z}{1}$
 \therefore Eigen vertus when $\eta = 6$ is $\chi_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

Module - 2

3 a) The area of a circle (A) corresponding to diameter (O) is given below. Find the area corresponding to diameter 105 using an appropriate interpolation, $\frac{12}{A}$ 30 35 30 35 100 A 5026 5674 6362 7088 7854

solution: Here 105 is near to 100, Newton's backward interpolation formula is appropriate. D and A correspond to 2 and y. The backward difference table is

1			1			
	x=0	y=A	7y	7 ² 4	√ ³ y	√ ⁴ 4
	80 &<	5026	648	40	-	
	90	6260	688	20	-2	20-54
	90	7-00	726	لاد.	2=	1=140
	7 100	4088	766	40	V ³ yo	
	×Λ - · ·	9n = 7854	= 74n	ヤリカ		
	By Newto	o's Backwar	el Interp	olation	formula	·
	y(x)= yn+	$r r y_n + r (r - 2)$	+1) 2240+ 3	(8+1) (8+ 31	$\frac{(2)}{\sqrt{2}} \sqrt{2} \frac{(2)}{\sqrt{2}} + -$	
	2= 3	-20 = 105-	$\frac{100}{5} = 1$	0 1		
	- Y(105)=	7854+167	$(66) + \frac{1(2)}{2}$	(40) + 1($\frac{2}{3}(3)(2)+(1)$)(2)(3)(4) 4
		= 7854+ A	-664404	2+4	6 –	24
	9(105)= 8666				
	The area	a A when	Diame	for $D = 1$	8 29 ZO	.666
3.64	find a r	real hast o	$t \alpha^{3} 2x$	-5=0	correct t	o thre
	definal	places	by resinc	Newto	n - Recphsor	nethod
Solution	Let f	(x)= x3=2x-	5			
	Now f	[0]=-520,	7(1)=-6<	0, f(2)	= -1<0 ,f	(3)=16>0
	: real	not les	in $(2,3)$) and	it is ne	as to 2
	÷ L	et $x_0 = 2$				
	Newton	Reyphson	formula	2۴ .	$\mathcal{X}_{n+1} = \mathcal{X}_n$	$=\frac{f(x_0)}{f^{1}(y_0)}$
	Fisch Ster	ation is	x1= x0-	f(x.)		
			= 2-	$\frac{f(2)}{f(2)} =$	$2 + \frac{1}{10} =$	2-1
	2nd Pterat	sin rui	$\gamma_2 = \alpha$	$-\frac{f(x_1)}{f(x)}$		
				. ,	·	

$$\begin{split} &\chi_{2} = 2 \cdot 1 - \frac{f(2 \cdot 1)}{f^{1}(2 \cdot 1)} = 3 \cdot 1 - \frac{(3 \cdot 1)^{2} - 2(2 \cdot 1) - 5}{3(2 \cdot 1)^{2} - 2} = 3 \cdot 0 q u f \\ &\alpha d \qquad \chi_{3} = \chi_{2} - \frac{f(\chi_{3})}{s^{1}(\chi_{3})} = 3 \cdot 0 q u f - \frac{f(2 \cdot 0 q u f)}{s^{1}(2 \cdot 0 q u f)} \\ &= 3 \cdot 0 q u f - \frac{(2 \cdot 0 q u f)^{2} - 3(\lambda \cdot 0 q u f) - 5}{3(2 \cdot 0 q u f)^{2} - 2} \\ &\chi_{3} = 2 \cdot 0 q u f \\ &\therefore \quad Required \quad 7001 \quad fs \qquad \chi = 2 \cdot 0 q u f \\ &\vdots \quad Required \quad 7001 \quad fs \qquad \chi = 2 \cdot 0 q u f \\ &\vdots \quad find \quad the \quad fourthm \quad 700t \quad 0 - 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 - 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 - 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 - 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad the \quad fourthm \quad 700t \quad 0 + 1 \cdot 2 \quad correct \\ &3 \cdot c f \quad find \quad four \quad equal \quad shrips \\ & solution: \quad Let \quad a = 0, \quad b = 1, \quad n = U \quad \cdots \quad h = \frac{b - a}{o} = \frac{1}{t_{4}} \\ & y = \frac{1 - 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{1} = \frac{1 + 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{1} = \frac{1 - 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \\ & y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \\ & f = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1}{1 + \chi^{2}} \quad y_{0} = \frac{1 - 1$$

4.a>	From the following table, find the number
	of students who have obtained less than
	45 marks. Marks 30-40 40-50 50-60 60-70 70-80
	Students 31 42 51 35 31
Solution	We shall reconstitute the given table with
	f(x) representing the number of students
	less than X marks. less than 40 marks 31 students less than 50 marks 73 students Less than 60 morks 124 students Less than 70 marks 159 students Less than 80 marks 190 students
	We need to find f(us) X y=f(n) Dy D ² y D ³ y D ^y y
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	By Newton's forward interpolation By Newton's forward interpolation
	$y = y_0 + x \Delta y_0 + x \frac{ x-1 }{2!} \Delta y_0 + x \frac{ x-1 }{3!} \Delta y_0 + x \frac{ x-1 }{3!} = 10^{-10}$
	= y = f(us) = 31 + 0.5(uz) + 0.5(0.5-1) = + 0.5(-0.5)(-1.5)(-25) + 0.5(-0.5)(-1.5)(-2.5) (37) = 24
	- 48 students have scored less than 45 marks

4.6) find the fourth root of 12 correct to three decimal places by Regula-Falsi method Let x=4/12 : x=12 > x-12=0 Solutio: :. Let A(2)= 24-12 +(0)=-12<0, +(1)=-11<0, +(2)=4>0 :- root lies in (1,2) and it is near to 2 Now {(1.9)=1-0321>0, f(1.8)=-1.502420 : Root Lies in (1.8, 1.9) First iteration: $\chi_1 = \frac{af(b) - bf(q)}{f(b) - f(q)}$ = 1.8f(1.9) + 1.9f(1.8)f(1-97-f(1-8) $\chi_{1} = \frac{1 \cdot 8(1 \cdot 0321) + 1 \cdot 9(1 \cdot 5024)}{1 \cdot 0324 + 1 \cdot 5024} = 1 \cdot 8593$ Now $f(x_1) = f(1.8593) = (1.8593)^4 - 12 = -0.019220$ 2^{nd} Pteration is $\gamma_2 = \frac{af(b) - bf(q)}{f(b) - f(q)}$. $a_{2} = 1.8593 + (1.9) - 1.9 + (1.8593)$ f(1.9) - f(1.8593) = 1.8593(1.0321) - 1.9(-0.0492) = 1.86121.0321 - (-0.0492) Now $f(x_2) = f(1-8612) = (1-8612)^4 - 12 = -0.00025 < 0$:- Root lies in (1.8612,1.9) 3rd iteration is N2 = 1.8612 + (1.9) - 1.9 + (1.8612) f(1-9)-f(1-8612) = 1 - 8612 (1 - 0321) - 1 - 9 (-0 - 00025)1-0321 - (-0-00025) $\chi_3 = 1.8612$ - Required not is x= 1.8612

10.07 Evaluation
$$\int_{1}^{5,2} \log_{e^{x}} dx + taking 6 Equal = 4nips$$

by applying Weddle's rule.
= $a_{-4}, b=5,2, n=6$... $h=b=a = 5\cdot 2-4 = 0.2$
The values $g x and y are as follows
 $x = x_{0}=a = x_{1}=x_{0}+b = x_{2}=x_{1}+b = x_{2}=x_{2}+b$
 $g=\log_{e^{x}} y_{3}=\log_{x^{0}} y_{1}=\log_{x^{0}} y_{2}=\log_{x^{0}} y_{3}=\log_{x^{0}} z_{3}$
 $= 1\cdot 2863 = 1\cdot 251 = 1\cdot 2864 = 1\cdot 2561$
 $x_{u}=x_{3}+b = x_{2}-x_{u}+b = x_{1}6 = 1\cdot 2561$
 $x_{u}=x_{3}+b = x_{2}-x_{u}+b = x_{1}6 = 1\cdot 2561$
 $x_{u}=x_{3}+b = x_{2}-x_{u}+b = x_{1}6 = 1\cdot 5261$
 $x_{u}=x_{3}+b = x_{2}-x_{u}+b = x_{1}6 = 2\cdot 261$
 $x_{u}=x_{0}x_{1} = 4x_{1}6 = 1\cdot 603x_{1} = 1\cdot 603x_{1}$
 $heddle's rule for $n=6$ is
 $\int_{0}^{1} y dx = \frac{3h}{10} \left[y_{0}+5y_{1}+y_{2}+6y_{3}+y_{4}+5y_{5}+y_{6} \right]$
 $x_{u}=x_{0}x_{1}dx = \frac{3(0\cdot 2)}{10} \left[1\cdot 2863 + 5(1\cdot (3\cdot 5)) + 1\cdot (3\cdot 816) \right]$
 $+6(1\cdot 5261) + 1\cdot 5686 + 5(1\cdot 6094) + 1\cdot 608x_{1}^{2}$
 $x_{u}=x_{0}x_{1}dx = 1-8279$.
 $y_{u}=x_{0}dx = 1-8279$.$$

5.4) Solve
$$\frac{d^{3}y}{dn^{3}} + 6\frac{d^{3}y}{dn^{2}} + 11\frac{dy}{dn} + 64=0$$

Solution: We have $(Q^{3}+6N^{2}+11N+6)Y=0$
 $\therefore A+E \cdot is$ $m^{3}+6m^{2}+11m+6=0$
We show find the one heat by inspection
 $Ib m=-1$ theo $CO^{3}+6(-1)^{2}+11(-1)+6=0$
 $\therefore m=-1$ is one heat
New By Synthetic division
 -1 $1 = 6 = 11 = 6$
 $\therefore m=-1 = 15$ one heat
 $Nac By Synthetic division$
 -1 $1 = 6 = 11 = 6$
 $\therefore m=-1 = 15$ one heat
 $n=-2, -3$.
 $\therefore solution is Y=C_{1}E^{3}+C_{2}E^{23}+(3E^{33})$
 $S-by Solve Y^{11}+2y^{1}+Y=COSh(3/2)$
 $A+E-is m^{2}+2m+1co = 3m = -1, -1$
 $\therefore Y_{c} = (C_{1}+(2x))E^{3}$.
Now $Y_{p} = \frac{(aSn(3/2))}{A^{2}+20+1} = \frac{1}{2} \begin{bmatrix} \frac{e^{3/2}}{D^{2}+20+1} + \frac{e^{3/2}}{D^{2}+20+1} \end{bmatrix}$
 $Type(0, a=-1/2)$
 $Peplace B by -y_{2}$
 $= \frac{1}{2} \begin{bmatrix} \frac{e^{3/2}}{V_{2}} + \frac{e^{3/2}}{V_{2}} + \frac{e^{3/2}}{Q^{2}+20+1} \end{bmatrix}$
 $Y_{p} = \frac{2}{9} e^{3/2} + 2e^{3/2}$

5. c) Solve y -44+134= cos2x Solutio: 1 Ale have (D2-410+13) y= cos2x A, E. is m2-um+13=0 = m= 2±3i :- 4r = equ (C(10532+(251032)) Now $y_p = \frac{\cos 2\pi}{D^2 - 4D + 13}$ Type (2) a = 2 $D^2 - 4D + 13$ Replace $D^2 - by - a^2 = -4$ $= \frac{\cos 2x}{-u-u} = \frac{\cos 2x}{q-u} \times \begin{pmatrix} q+uy \\ q+uy \end{pmatrix}$ = $(q+up)\cos^2 r$, Replace $p^2 by -a^2 = -4$ $= \underline{9}(052\chi - 85in2\chi) = \underline{9}(052\chi - 85in2\chi)$ 81-16(-4) :- Complete solution is Y=Yc+Yp 4- e2x (C(1053x+(25in3x) + 90052x-85in2x 145 6 as. Solve (4,94-4,93-23,02+12,0+36)y=0 Solution: A.E. is 4m - 4m - 23m + 12m + 36=0 If m=2 then U(2)4-U(2)3-2(2)2+12(2)+36=0 : m=2 is a loot by inspection. Now by synthetic division Now 4m3+4m2-15m-18-0 Again if m=2 =1 4(8)+4(4)-15(2)-18=0

> Maz is a root by Propertion. Again by synthetic division

6-c) solve (02+4) y= sin'x $m^2 + u = 0 = m = \pm 2i$ Solution A.E. is -- YC= CICOS2X + C2SIN2X $Y_p = \frac{\sin^2 x}{\alpha^2 + 1} = \frac{1}{\alpha} \left(\frac{1 - \cos 2\alpha}{\alpha^2 + 1} \right)$ Also $= \frac{1}{2} \left[\frac{1}{p_{+4}^2} + \left(\frac{-\cos 2x}{p_{+4}^2} \right) \right] = \frac{1}{2} \left(p_1 + p_2 \right)$ Now PI= I Type D a=0. Replace Nby 0 $P_1 = \overline{o_{\pm 10}} = \overline{t_0}$ and $P_2 = -\frac{(052)}{A^2+4}$. Type (2) a=2 Replace A^2by-4 But denominator is 0 $\frac{1}{2} - P_2 = -\chi \frac{\cos 2\chi}{2A} = -\chi \frac{\cos 2\chi}{2} d\chi$ $P_2 = -\frac{\alpha sin 2x}{10}$ $\therefore \quad \forall p = \pm (P_1 + P_2) = \pm \left[\frac{1}{4} - \frac{2}{4} \right]$ $y_p = \frac{1}{8} - \frac{\chi_{\text{sin2x}}}{6}$: Complete solution is y= yc+4p 4= GCOS2x+C2Sin2x+ - 2281n2x

Module-4

7.a) form a p.D.E. by climinating the arbitrary
Constant from the relation $\frac{\chi^2}{a^2} + \frac{\chi^2}{b^2} + \frac{\chi^2}{c^2} = 1$
Solution $\frac{9t^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (1)
Differentiate O W.S-t 2 and y partially
$\frac{2X}{a^2} + \frac{2Z}{c^2} \xrightarrow{0Z} = 0 = \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{0Z} = 0 = \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{0Z} = 0 = \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1} \frac{2}{c^2} \xrightarrow{1} \frac{2}{a^2} \xrightarrow{1}$
$\frac{24}{10^{2}} + \frac{22}{c^{2}} \frac{02}{04} = 0 = 3$
Since there are 3 arbitrony constants, we
differentialt turther.
drib @ postrally w.v.t. χ $\frac{1}{\alpha^2} + \frac{1}{c^2} \left(\frac{\partial z}{\partial x} \right)^2 + \frac{z}{\partial x^2} = 0 - 0$
From (D) $\frac{1}{a^2} = -\frac{z}{c^2 \pi} \frac{\partial z}{\partial x}$
: Equation @ is $-\frac{z}{c^2\pi} = \frac{\partial z}{\partial x} + \frac{1}{c^2} \left(\frac{\partial z}{\partial x} \right) + \frac{1}{c^2 c^2} = 0$
$\frac{1}{2} \frac{\partial z}{\partial x} = \left(\frac{\partial z}{\partial x} \right)^2 + z \frac{\partial^2 z}{\partial x^2}$
$Z \frac{\partial Z}{\partial \lambda} = \chi \left(\frac{\partial Z}{\partial \chi} \right)^2 + \chi Z \frac{\partial Z}{\partial \chi^2}$ is the
required P-dre

7.4.6) Form a p. D.E. by eliminating arbitrary function
from Z=
$$f(4+\pi)+ g(4+2\pi)$$

Schulten Now $\frac{\partial Z}{\partial X} = f^{1}(\pi+4) + g^{1}(4+2\pi)$
 $\frac{\partial Z}{\partial Y} = f^{1}(\pi+4) + g^{1}(4+2\pi)$
 $\frac{\partial Z}{\partial X} = f^{1}(\pi+4) + g^{1}(4+2\pi)$ (0)
 $\frac{\partial^{2} Z}{\partial X} = f^{11}(\pi+4) + g^{11}(4+2\pi)$ (0)
 $\frac{\partial^{2} Z}{\partial X} = f^{11}(\pi+4) + g^{11}(4+2\pi)$ (2)
 $\frac{\partial^{2} Z}{\partial X} = f^{11}(\pi+4) + g^{11}(4+2\pi)$ (2)
Now (0-@ gives $\frac{\partial^{2} Z}{\partial X} - \frac{\partial^{2} Z}{\partial X} = g^{11}(4+2\pi)$ (4)
Now (0-@ gives $\frac{\partial^{2} Z}{\partial X} - \frac{\partial^{2} Z}{\partial X} = g^{11}(4+2\pi)$ (4)
Now dividing (1) by (2) we get $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = g^{11}(4+2\pi)$ (4)
Now dividing (1) by (2) we get $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = g^{11}(2+2\pi)$ (2)
Now dividing (1) by (2) we get $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = g^{2}$
(2) $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 2$
 $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 2$
 $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 0$ is the Jequind
 $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 0$ is the Jequind
 $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 0$ is the Jequind
 $\frac{\partial^{2} Z}{\partial X^{2}} - \frac{\partial^{2} Z}{\partial Y} = 0$ is on odel
multiple of π^{2}
 $\frac{\partial^{2} Z}{\partial X^{2}} = \sin x \sin y$ (3) $\frac{\partial}{\partial X} \left(\frac{\partial Z}{\partial Y} \right) = \sin x \sin y$
Eulographing with the form Y as constant
 $\frac{\partial Z}{\partial Y} = -\sin y \sin x + f(y) = -\sin y \sin x + f(y) = -\sin y \sin x + f(y)$ (1)

Independing with y dreading x as constant

$$Z = -\cos x \int \sin y \, dy + \int f(y) \, dy + g(y)$$

 $Z = \cos x \cos y + \int f(y) \, dy + g(y)$
Also by data $\frac{\partial z}{\partial y} = -\partial z \sin y$ when $x = 0$
 \therefore Equation (D = 3) $-\partial z \sin y = -\sin y + f(y) = f(y) = -\sin y$
Also $\int f(y) \, dy = \int -\sin y \, dy = \cos y$
 \therefore Equation (D) is $z = \cos x \cos y + \cos y + g(y) - (3)$
 $gnd condition$ is $z = 0$ if $y = (2n+1)\pi h$
 \therefore Equation (D) is $0 = \cos x \cos(2n+1)\pi h + (\cos(2n+1)) \frac{\pi}{2} + g(h)$
 $0 = -0 + 0 + g(y) \Rightarrow g(y) = 0$
 \therefore Solution (G) the $p \cdot y - \xi - 1$
 $z = (0 \le x \cos y + (0 \le y) = (\cos x + 1)$.

8 a) Form a p.D.F. by eliminating autitrary function toom $Z = e^{\alpha x + by} f(\alpha x - by)$. Solution: $Z = e^{\alpha x + by} f(\alpha x - by)$ Now $\frac{\partial Z}{\partial x} = a e^{\alpha x + by} f^{1}(\alpha x - by) + a e^{\alpha x + by} f(\alpha x - by)$ $\bigotimes \frac{\partial Z}{\partial x} = a e^{\alpha x + by} f^{1}(\alpha x - by) + a 2$ (2)Also $\frac{\partial Z}{\partial x} = e^{\alpha x + by} f^{1}(\alpha x - by) (-b) + b e^{\alpha x + by} f(\alpha x - by)$ $= -b e^{\alpha x + by} f^{1}(\alpha x - by) (-b) + b e^{\alpha x + by} f(\alpha x - by)$ Multiplying (2) by b, (3) by 'a' and adding $b \frac{\partial Z}{\partial x} + a \frac{\partial Z}{\partial y} = a b Z$ fs the sequenced p.D.E. 8. b) form a p. D. E by eliminating ausitrary function \$ (x14+ 2°, x+y+2)=0 5000 We have by clasta $\phi(u,v)=0$ — () solution Where U=xy+z? and V=X+Y+201/0x=1+02/0x $\frac{\partial U}{\partial x} = y + 22 \frac{\partial z}{\partial x}$ and 01/6y = 1+ 02/6y <u>DU</u> = 2+2202 Let us differentiate (D w.r.t x and y by applying chain rule $\frac{\partial \varphi}{\partial u} \cdot \frac{\partial \psi}{\partial x} + \frac{\partial \varphi}{\partial v} \cdot \frac{\partial v}{\partial x} = 0 \quad \text{(a)} \quad \frac{\partial \varphi}{\partial u} \cdot \frac{\partial \psi}{\partial x} = -\frac{\partial \varphi}{\partial v} \cdot \frac{\partial v}{\partial x} - \text{(b)}$ $\frac{\partial \Phi}{\partial u} \stackrel{\partial \Psi}{\partial y} + \frac{\partial \Phi}{\partial y} \stackrel{\partial \Psi}{\partial y} = 0 \quad \text{and} \quad \frac{\partial \Phi}{\partial u} \stackrel{\partial \Psi}{\partial y} = -\frac{\partial \Phi}{\partial y} \stackrel{\partial \Psi}{\partial y} - 3$ Ofniching @ by 3, we get Toufor = Tovfor $\frac{y + 22^{02}/0x}{x + 22^{02}/0y} = \frac{1 + \frac{02}{0}x}{1 + \frac{02}{0}y}$ y + 22 0% + y 02 + 2202 02 = x+2202 + x 02 + 2202 02 :. $\frac{\partial z}{\partial x}(x-z_2) = \frac{\partial z}{\partial y}(y-z_2) + x-y=0$ Ps the required P-D.T.

8. c) Solve Dz = z given that when y=0, z=ex and $\frac{\partial z}{\partial y} = \bar{e}^{\gamma}$. Assume the given p.d.e in the form of Solution ODF. $\frac{d^{2} x}{d x^{2}} = Z \quad OT \quad \frac{d^{2} z}{d y^{2}} - Z = O \quad OT \quad OT \quad OT = O$ A.E. is m2-1=0 =1 m=1-1 :- solution of p-d-e is $Z = f(m) e^{M} + g(n) e^{-Y} \longrightarrow \mathbb{O}$ $\frac{\partial z}{\partial y} = f(x)e^{y} - g(x)e^{y} - 0$ Also Given that z=ex when y=0 and $\frac{92}{30} = e^{\chi}$ when y=0. :- Equations (D& D) will become $e^{\chi} = f(\chi) + g(\chi) - 3$ $e^{\chi} = f(\eta) - g(\eta) - \omega$ Now (3+6) gives $2f(n) = e^2 + e^2$ $-f(n) = e^{2} + e^{2} = \cosh x$ and (3-4) gives $ag(n) = e^{\gamma} = e^{\gamma}$ g(n) = sinhx. :- Solution is Z= (coshn) e^y+(sinhn)e^y.

Module -5

9 a) State and prove addition theorem of probability Solution; statement: If A and B are any two events

of S which are not mutually exclusive theor P(AUB) = P(A) + P(B) - P(ANB)

prof: We prove the result using the tollowing Venn dragram.

From the figure, A= (ANB)U(ANB) B= (ANB)U(ANB)

=> P(A) = p(AnB) + p(AnB). Since AnB and AnB an disjoint

P(B) = P(AnB) + P(AnB), since AnB and AnB are disjoint.

: From the anions of probability

p(A)+p(B) = p(AnB)+p(AnB)+p(AnB)+p(AnB)p(A)+p(B) = p(AUB)+p(AnB)

Thus p(AUB) = p(A) + p(B) - p(AOB)

9 bl. It A and B are independent events, Show that the events (i) A and B (i) A and B (ii) A and B are independent. (1) We have by De-morgan's law Bolution: AUB = ANB NOW P(ANE) = P(AUB) = 1- P(AUB) = 1- P(A)- P(B)+ P(ANB) $= 1 - p(A) - p(B) + p(A) \cdot p(B)$ = [1-P(A)][1-P(B)] $= P(\overline{A}) \cdot P(\overline{B})$ Thus A and B are independent (1) From the figure. ANB ANB B= (ANB)U(ANB) P(B) = P(ANB) + P(ANB) ANB $p(\overline{A}nB) = p(B) - p(AnB) = p(B) - p(A) \cdot p(B)$ = P(B)[I-P(A)] = P(B)-P(A)Fland B are independent <u>.</u>. (II) Also from the figure A= (ANB)U(ANB) $p(A) = p(An\bar{B}) + p(AnB)$ $p(A \cap \overline{B}) = p(B) - p(A \cap B) = p(B) - p(A) \cdot p(B)$ = P(B)(1-P(A)) $= P(B) p(\overline{A})$: A and B are independent.

9.4 The probability that 3 students A, B, C solve a problem ax 1/2, 1/3, 1/4 respectively If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved 9.

Solution: probability that A can solve the problem p(A)=1/2 probability that B can solve the problem p(B)=1/2 probability that c can solve the problem p(c)= 1/4 p(problem solved) = 1-p(problem being unsolved by A, B, C) P(E) = 1-P(E) P(E) is the probability that the problem is not solved $\therefore p(\overline{E}) = p(\overline{A}) \cdot p(\overline{B}) \cdot p(\overline{C})$ = (1 - p(A))(1 - p(B))(1 - p(C))= 1/2 · 2/3 · 3/4 = 1/4 Hence P(E) = 1-1/4 = 3/4. probability that the problem is solved is 3/4 10.9> State and prove Baye's theorem

Solution: Statement: Let ALA2,... An bea set of exhaultive, mutually exclusive events of a sample space S with P(Ai)to for each i, It A is any other event associated with Ai, (AcÜAi)

with P(A) to then $P(A^{i}/A) = \frac{P(A^{i})P(A/A^{i})}{\sum_{i=1}^{2} P(A^{i})P(A^{i})}$ prub: We have, S= AIUA2UA3U---- UAn and ACS : A= SNA = (A,UA2U---- An) NA Using distributive law in the RHS $A = (A_1 \cap A) \cup (A_2 \cap A) \cup \dots \cup (A_n \cap A)$ AinA for i=1 to n are mutually exclusive, we have by applying the addition Since rule of probability, $p(A) = p(A_1 n A) + p(A_2 n A) + - - - + p(A_n n A)$ Now applying multiplication rule onto each term in the RHS, P(A)= P(A).P(A/A) +P(A2).P(A/A2) + --- +P(A).P(A/A) $P(A) = \sum_{i=1}^{n} P(A_i) P(A|A_i) - 0$ The conditional probability of A; for any i given A, is defined by $P(Ai/A) = \frac{P(AinA)}{P(A)} = \frac{P(Ai) \cdot P(A/Ai)}{P(A)}$ Using (D) $P(Ai/A) = \frac{P(Ai) \cdot P(A/Ai)}{\frac{2}{3} P(Ai) P(A/Ai)}$

10.19 Three machines A, B and C produce respectively Got, 30%, 10% of the total number of stems of a factory. The percentages of defective output of these machines are respectively 12%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the stem was produced by Machine C. Colubio: Let A, B, C stand for the events of Selection of an item from machines A, B, C. : p(A)= 60.).=0.6, p(B)= 30.1.=0.3, p(c)=10.1.=0.1 Les 19 be the event of selection of a defective P(P/A)= 21/= 0.0.2, P(D/B)=31-=0.03 P(S/c) = 41 = 0.04.To find the probability that a selected Item is produced from the machine C, we need to find P(c/0). $P(4\alpha) = \frac{P(c) \cdot P(B/c)}{P(A) + P(B) \cdot P(A/B) + P(c) \cdot P(D/c)}$ By Baye's theorem = (0.1)(0.04) (6.6)(0.02) + (0.3)(0.03) + (0.1)(0.04) $p(q_{A}) = 0.16$

10.5 A Shootes can hit a target in 3 out gy
Shots and another shooter an hit the
target in 2 out g 3 shots. Find the
probability that the target is being hit
(a) When both g them try (b) by only one shootes
Solution: Let S, and S₂ be the events that the
Shooters 1 and 2 hit the target.

$$p(S_1) = 3/4$$
, $p(S_2) = 2/3$
a) When both g them try
 $p(S_1 \cup S_2) = p(S_1) + p(S_2) - p(S_1 \cap S_2)$
But S₁ and S₂ are independent
 $\therefore p(S_1 \cup S_2) = p(S_1) + p(S_2) - p(S_1) \cdot p(S_2)$
 $= \frac{3}{4} + \frac{3}{4} - \frac{3}{4} \cdot \frac{2}{3} = \frac{11}{12}$
 $p(S_1 \cup S_2) = \frac{11}{12}$
b) By only one shooter
 $(G_1 \cap S_2) \cup (S_1 \cap S_2)$] = $p(S_1) \cdot p(S_2) + p(S_1) \cdot p(S_2)$
 $= p(S_1) \cdot p(S_2) + p(S_1) - p(S_1 \cap S_2)$
 $\therefore p(C_1 \cap S_2) \cup (S_1 \cap S_2)$] = $p(S_1) \cdot p(S_2) + p(S_1 \cap S_2)$
 $= \frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{2}{3}$
 $= \frac{5}{12}$
 \therefore Required probability is $\frac{5}{12}$.