USN 🙀 🗰 🔥 🏟 🗰 🖇 💩

Time: 3 hrs.

l

2

3

4

5

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Define static equilibrium. State two conditions for equilibrium (04 Marks)
b. In a slider crank mechanism, the force applied to the piston is 1 kN, when the crank is at 60° from IDC. The length of the crank is 100mm and connecting rod is 300 mm. Calculate the driving torque T₂ on the crank to attain equilibrium. (16 Marks)

OR

The dimensions of a four-link mechanism are AB = 500 mm, BC = 660 mm, CD = 560 mm and AD = 1000 mm. The link AB has an angular velocity of 10.5 rad/sec counterclockwise and an angular retardation of 26 rad/sec² at the instant when it makes an angle of 60° with AD, the fixed link. The mass of the links BC and CD is 4.2 kg/m length. The link AB has a mass of 3.54 kg, the center of which lies at 200 mm from A and a moment of inertia of 88,500 kg-mm². Neglecting gravity and friction effects, determine the instantaneous value of the drive torque required to be applied on AB to overcome the inertia forces. (20 Marks)

Module-2

- a. Justify the need of balancing of rotating parts for high speed engines. What is the difference between static and dynamic balancing? (04 Marks)
 - b. A shaft carries four masses A, B, C and D placed in parallel planes perpendicular to the shaft axis and in this order along the shaft. The masses B and C are 40 kg and 28 kg and both are at 160mm radius. While the masses in planes A and D are at 200 mm radius. Angle between B and C is 100°, B and A is 190°, both angles being measured in the same sense. Planes A and B are 250mm apart, B and C are 500mm apart. If the shaft is to be in complete balance, determine (i) Masses in planes A and D (ii) Distance between planes C and D (iii) Angular position of mass D.

OR

The pistons of a 4 cylinder vertical inline engine reach their uppermost position at 90° interval in order of their axial position. Pitch of cylinder is 0.35m, crank radius is 0.12m, length of connecting rod is 0.42m. The engine runs at 600rpm. If the reciprocating parts of each engine has a mass of 2.5kg, find the unbalanced primary and secondary forces and couples. Take central plane of engine as reference plane. (20 Marks)

Module-3

- a. Define the following terms with reference to governors:(i) Sensitiveness (ii) Hunting (iii) Isochronism (iv) Governor power
 - b. Each arm of a porter governor is 300mm long and is pivoted on the axis of the governor. Each ball has a mass of 6 kg and the mass of sleeve is 18kg, the radius of rotation of ball is 200mm when the governor begins to lift and 250mm when the speed is maximum. Determine the maximum and minimum speed and range of speed of the governor. (12 Marks)

1 of 2

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Dynamics of Machines

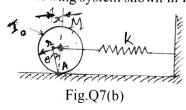
18ME53

(08 Marks)

18ME53

- a. Define gyroscopic effect. With usual notations and diagram, derive an expression for the gyroscopic couple produced by a rotating disc. (08 Marks)
 - An acroplane has engine speed 2000rpm clockwise when viewed from rear. It is flying at b. 240 kmph speed and turns towards lift and completes a quarter circle of 60m radius. The mass of the rotor engine and the propeller of the plane is 450kg with a radius of gyration of 320 mm. Determine the gyration couple on the aircraft and its effect. In what way the effect changes when the (i) Aeroplane turns towards right (ii) Engine rotates clockwise when viewed from the front (nose end) and the aeroplane turns right. (12 Marks)

Module-4


a. Define the following terms: 7

6

(i) Simple harmonic motion (iv) Forces vibration

(ii) Natural frequency (iii) Resonance (v) Phase difference

- (10 Marks)
- b. Find the natural frequency of the following system shown in Fig.Q7(b).

- OR
- a. Set up the differential equation for a spring mass damper system and obtain complete 8 solution for the over-damped system. (10 Marks)
 - b. A vibrating system consists of mass 25kg, a spring of stiffness 15 kN/m and a Damper. The damping provided is only 15% of critical value. Determine (i) Critical damping coefficient (ii) Damping factor (iii) Natural frequency (iv) Logarithmic decrement (v) Ratio of two consecutive amplitudes of vibration. (10 Marks)

Module-5

- a. Define transmissibility and derive an expression for the transmissibility ratio and the phase 9 angle for the transmitted force. (10 Marks)
 - b. A mass of 100 kg has been mounted on a spring-dash pot system having spring stiffness of 19600 N/m and damping coefficient 100 N-sec/mt. The mass acted upon by a harmonic force of 39N at the undamped natural frequency of the system; find
 - (i) Amplitude of vibration of the mass
 - (ii) Phase difference between the force and displacement
 - (iii) Forces transmissibility ratio.

(10 Marks)

OR

- 10 a. Derive an expression for magnification factor or amplitude ratio for spring mass system with viscous damping subjected to harmonic force. (10 Marks)
 - b. A 54 N weight is suspended by a spring with a stiffness of 1100 N/m. It is forced to vibrate by a harmonic force of 5 N. Take viscous damping of 77 N-s/m and find,

(i) Resonant frequency (ii) Amplitude at resonance (iii) Phase angle at resonance.

(iv) Damped natural frequency (v) Frequency at which maximum amplitude of vibration (vi) Maximum or Peak amplitude (vii) Phase angle corresponding to peak amplitude (viii) Speed at which maximum amplitude of vibration would occur. (10 Marks)

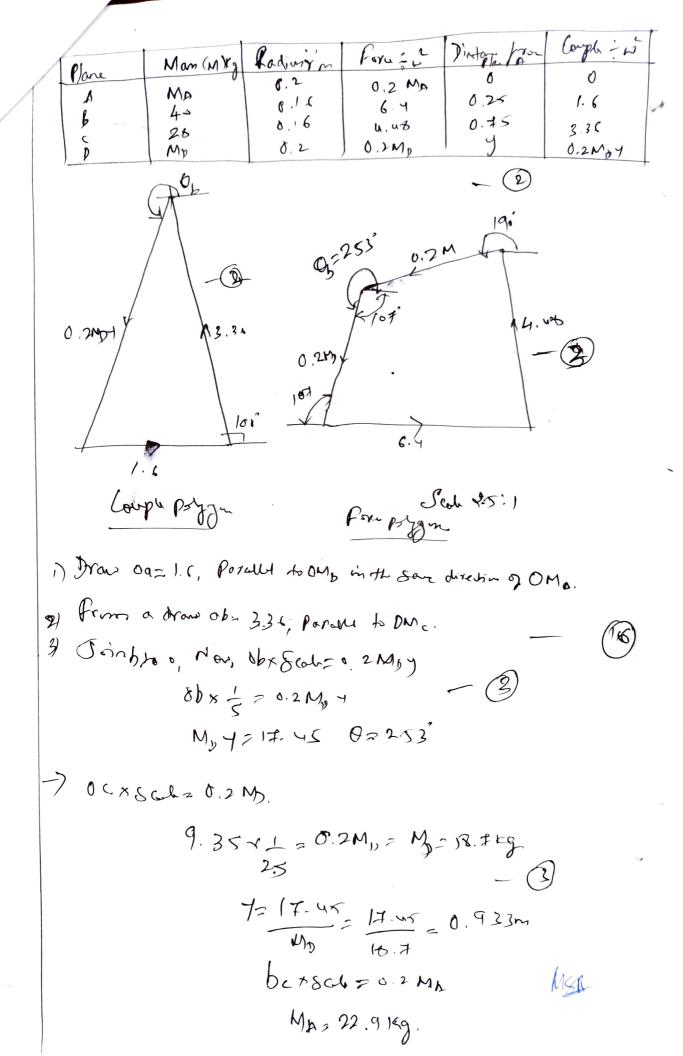
(10 Marks)

Ś 18ME53 Solution - Bussim Paper 2021-22 10) Static Equilibrium: A Body is in static equilibrium if it seemains is it state of past or motion. _ () Equilibrium q two Members. A member under the oction of two force will be in equilibrium if, i) The form an of same maynifiede (4)2) the force our oboy the sam line. 3 3) the form and is oppresite direction. A A BI F_2 15 300mm В 1KN 120 100000 ß TITI MINAT A f23 F34 ٧ b - () \$ F43 F32 _ 2 fzy -(2)Fig E Ó Mat

From For thingle
$$f_{245} = P_{1} \neq N$$

Also $f_{24} = f_{45} = f_{25} = f_{25} = - (2)$
Monton 2 will be in equilibrium of
 f_{12} in equil porabled and graph for f_{24} and
 $T = f_{24} = 1 \times 45 = 45 \text{ kMmm f(cm)}$
 $h = 45 \text{ cm} \text{ measured} = -(2)$
 $T = f_{25} = f_{25} = f_{25} \text{ kMmm f(cm)}$
 $h = 45 \text{ cm} \text{ measured} = -(2)$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH (CM)}$
 $T = 45 \text{ KH mm} = -35 \text{ KH mm} = -55 \text{ KH m} = -55 \text{ KH m}$

2)


$$\begin{split} & n_{2} = 3.5 \text{ w } r_{0}^{2} , M_{1}^{2} = 0.66 \text{ xb} . 2 = 2.47 \text{ kg}, \\ & n_{0} = 0.56 \text{ k} \cdot \text{d} . 2 = 2.55 \text{ kg}, \\ & F_{3}^{2} = 32.6 \text{ m}_{3}^{2} = 253.6 \text{ Fg} = 52.0 \text{ m/s} \text{ fg} = 27 \text{ J} \text{ m/s} \text{ J} \frac{1}{222} \text{ f} \\ & f_{3} = n_{3}^{2} \text{ Jg} = 80 \text{ M} \text{ L} \frac{1}{2}55 \text{ f} \\ & f_{3} = n_{3}^{2} \text{ Jg} = 160 \text{ w} \text{ L} \frac{1}{2}55 \text{ f} \\ & f_{4} = -\frac{1}{2} \text{ Jg} = 60 \text{ M} \text{ L} \frac{1}{2}55 \text{ f} \\ & f_{4} = -\frac{1}{2} \frac{1}{2} \frac{1}{$$

⁴⁾ Acad Year / SS Pl

.

The need of bolancing of scotating parts for high speed engines. The stotating parts need to be balanced because when the parts hotate at Ligh Speed the Centrifugal force an developed in the Hotaking part and Unever for a leady to vibration of the total body which in form Causes - 3 Hear at the strugt Constant points and to the being. Statie balaning .- When the centre of growing of an object is in the one of Actalism. Static balance has no tendency to state du la the force of gravity. _ \bigcirc - 4 Dynamic balaning + Dynamic balancing in when the detakin den not priden ang Resultat Contriguipore or couple (B C D I I I C Mc = 28 rg 250 500 190 the sky 01/ ra Morz Loky MAYA

36)

NEB

Secondary form 2 Mr (0910 = 0 23185;020=) Versid compant of Sendyfor : For= Mritr 2 Loous = Mm2 (Loso + (os 10= + (os 0 -+ (0)100) = 0 Hovers Companet 7 Sendy you For = Min Ssime - Minin (Sinot Sins= +8 ino + Sinis) .: Sie forns are bupplet baland. - 3 Samly couple Verkel corpared Sundy fought Sv= Mrasingue = 0 Sundy fought = 41WW (-0.525 Em-0.4569180 TO.175 (000+0555 (0018)) Alorsand bougsout y = 15, E= 0- 3 MW ~ (9) Seconday loop la - 1 1 A 2.5 × (2116 0) × 1.12 > 236.87 Nm 15

Marks

bene tiveness For montaining leaster speed of glotation.
He movement of glow should be as large as possible and
He however globage of equilibrium speed as build or
possible

$$S = N_{max} - Hin - 0$$

 $\frac{N_{max} - Hin}{2}$
Hunting: Hearting is Condition is which the speed get ergen
least which bey the generic global the to speed get organ
details by the near speed. It is Caused by a government
Here is too Surgive.
Jochrongin: A governer is said to be ide trading global and
the condition of the rease of the radii global and
global within the posting tradest for all radii global and
global within the posting tradest for all radii global and
global within the posting tradest
grower proves: It is product go the mean value of the 0
appendent though blick above more.
Fouring = mean effect x high of solure.
Since of a tradest too post.
 $N_{2} = 0.25m$, $N_{2} = 0.223m$, $N_{2} = 0.223m$,
 $N_{2} = 0.25m$, $h_{2} = 0.223m$, $N_{2} = 0.165m$.

MSA

Marks Solution and Scheme N,2= (m+m) 9 (60) when k= 1 L 03~ = (<u>(478</u>) × <u>981</u> (<u>c</u>-)¹ A 0.2231 (<u>2</u>n)² A N = 12C.SYPM Min Fr. J Speed Normg N3= MAM 9 (5-) Hhar K-1 b 5 (C+ 18), 981 + (6-) 6 0.1658 + (3) 12 No = 146.9 opm = Mox Speed Dange N_- N, = 146.9- 126.5 = - 20.48pm.- @ (a) (gyresup ceffer : is for nearing a maintaining orientation Lased on the principle of angular momentum Lef Share of Spining Consider a dise spining with her Share of Spining Consider a dise spining with angular relating about this Allong pression of Spico 2x in anticluterion = @ first as show in jig Aok

MA

۱L

Marks

I = man mond y insta of dis 0x let Abex N = Angelor reliving of the dise AGC 510 . Angela mount on gothe dise = I. W D 07-04= xx -(2)XX= 6x50= Julo. 8 Vote glage of angula momente = Iw.do FF C= Cm I. u. dw = Iu. do N. ~ Atro of the Iu. a GJUPP. 66) M= 450 Kg, 14= 0.32m $Hp = \frac{N}{r} = \frac{66.47}{1} = 1.11res/4$ N= 271 × 2 +00 = 209.4 rod/s 7= 240 ×103 = 66.67mls 3600 - 3 I= mx2= 450× (032)2 =46.08×m Rep (= I NHp= 41. 3×20 Effect, -> Figure Strown the acceptance is space 81.1 Non turns left a) ban angular momentum befor turing - 10,73 KNm = # 12 know bløb is angulor normalen after turning 2 () of sapplied couple 66) Noris depresend stail is revised i fign "I' will right furn Non 2) When accorpline take vigue torn, the still is depressed and non is Vairo d)

L

Marks

SHM- The motion of a backy to is fro about a fixed poind
is Colled SHM. Re-Asimut - O
Si-Au-Sound
Si-Au-Sound
Nation's Frequency: when no external forces acts on the system
after giving it an cost of child splacement the body vibrates. O
Ha= [4]m ruly
Resonance: Jhe vibration of a system reter the frequency
J caterial forces is equal to the notional Frequency of the system
forced vibration: Jo a system is been the for external
force of vibration of a system reter the frequency
J caterial forces is equal to the notion of forces distributed
forces of the sectoring vibration is properly of the system
Phone digreen - H is there angle bedreen two sectaring
vectors supressing SHM of the Same frequency. O
The sector of the the angle bedreen two sectaring
vectors supressing to make of meaning & ration r
as there a figure.
According to intervise method.
For Forma F= I O = For angle on displacement I D = - Rothing
I = 1 Mrt, K = -1 MrO - (B)
Mixt VM = C
Mixt VM = C
Mixt VM = C
Mixt VM = C

$$Mixt VM = 0$$

 $Mixt VM = 0$
 $Mixt M = 0$

NOD

10	Title : Subject Code :	
Question Number		Marks Allocated
80)	Differential equetion for spring men dampe system.	
	the power of the power of the power of the power of the state of the s	
	The equation of motion	
	Mn+(r+m=0-0)	
	To Some equation () Assumedize lower $\chi = e^{St} - \Theta$	
	$x = 5e^{8t} - 3$	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
	$M(s^{2},8) + C Se^{5t} + k_{e}^{8t} = 0$	
	<85 0	
	$\frac{52-5\pm\sqrt{5^2-Lac}}{2a}$	
	a=1 b= <td></td>	
	$S_{1,2} = + S_m \pm \sqrt{(S_m)^2 + (K_m)}$	
	$g_{12} = A_{1} = \frac{2}{2} = \frac{2}{4} \left(\frac{2}{2}h_{1}^{2} - \frac{2}{2}h_{2}^{2}\right) \left(\frac{2}{2}h_{1}^{2} - \frac{2}{2}h_{2}^{2}\right) \left(\frac{2}{2}h_{1}^{2} - \frac{2}{2}h_{2}^{2}\right) \left(\frac{2}{2}h_{1}^{2} - \frac{2}{2}h_{1}^{2}\right) \left(\frac{2}{2}$	× In
	Over dauped Condition A, (-3+15-1)	
	Az Aze	

	ibject Ti	tle : Subject Code :	Marks
	uestion umber	Solution	Allocate
		S, = + 12, (-3+ 13-+ S, = ~, (-3+ (3-1))	
		Suntanting S. = Ma (-3-15-1)	
		M=n, dt t=> to obtain A, &A2	
		r o at t= 0	
		$\dot{\gamma} = A_1 (-3 + (s^2 - 1)) + e^{+(s_1 + (s^2 - 1))}$	
		+ A2 (-3= (3-1) 62 (-67-141-1)6	
		$\Lambda_1 = \Lambda_2 = , \ \chi_{=} \begin{bmatrix} \zeta + \sqrt{\zeta^2 - 1} \\ 2\sqrt{\zeta^2 - 1} \end{bmatrix} \chi_{e} = $	(13)
		$\frac{1}{2\sqrt{5^{-1}}} - \frac{5}{2\sqrt{5^{-1}}} + \frac{1}{2\sqrt{5^{-1}}} + \frac{1}{25^{$	
6	12		
0	??	M=25kg, K= 15000 N/m. ABSULLIS F=25×9.81 245 N=F	
		$C_{(=2m)} = \frac{1}{2} \sqrt{\frac{1}{2}} \frac{1}{\sqrt{2}} \sqrt{\frac{1}{2}} $	
		Nn= 3.89 Hz.	
		(12+25+3.89=194.N.S/m 2)	
		15 1. g (= 29. 23 N. 5/20.	
		F= in (= f= 245 = 2= 1 Asm	
			10)
		dauping law - C 2/15	
		dauping from = $\frac{2}{12} = \frac{245}{194} = 1.26 = 2$	
		$\log d_{\ell}(read \neq \frac{3}{2} \partial t_{l} = \frac{1.21}{(1-1.2)^{2}} \partial t_{l} = \frac{1}{(1-1.2)^{2}} \partial $	
12		VI-92 (1-1.202 = 0.32	
		NED	

G. P. On) ubject Title : Subject Code : Question Marks Solution Number Allocated Trans-issibility ! The ratio of force transities to 99 the foundation to that I impreme & force oching lyn the Syster Rever Contraction MANTA Reference (b) 3 For the forw acting in the zaho m the found them, $F_{fr} = \sqrt{(14r)^2 + ((14r))^2}$ Fir = XV K2 + (22) $x = \frac{F_0}{\sqrt{e^{0} + (e^{0})^2}} \frac{x}{\sqrt{(k-m^2)^2 + (m)^2}}$ Fyr= fr (127+ ((L)) V (K-m2)2+((1)) 12 Jr= For: VI+(2(4/4))2 $\sqrt{\left(\frac{\omega_{1}}{\omega_{1}}\right)^{2}}$ $\frac{1}{\tau}$ $\left(\frac{\omega_{1}}{\omega_{1}}\right)^{2}$ Tris draminsibility ratio Non d= tail ((w) \$= tail 2200 ta- (21 4/00)

abject T	itle : Subject Code :	
Question Number	Solution	Marks Allocated
96	M=10019, K=19600 H/m C=N-S/m FS=39N	
	No= 14 rad/s= [Kh =	
	C= 2m w, 4	
	in a coupy rabis	
) Amplitude og mon	
	Xm = X >	
	$\sqrt{\frac{5}{5}(1-(\frac{1}{2}/2))^{2}} + (\frac{2}{2}(\frac{1}{2}/2))^{2}}$	
	N=2 F= 1.98 xim W=H	
	Xnu -= 0.028m	
	ii) $\phi = + \cos^{-1} \left(\frac{\partial_1 \psi_{n}}{1 - (\psi_{n})^2} \right) = 9 \sqrt{2}$	
	$iii) \in = \sqrt{\frac{1 + (2i)}{(2i)^2}} + (2i)$ $\frac{1 + (2i)}{(2i)^2} + (2i)$ $\frac{1 + (2i)}{(2i)^2} + (2i)$	
	$E_2 \sqrt{\frac{1+(2\pi 0.035)^2}{280.0358}} = 14.04$	
	NG N	
	h An	

bject Title : Subject Code : Marks Question Solution Allocated Number 10)(Magnification factor : It is very important to study the steady state behaviour of the System Beeginchin. The retur of steady state Aughtuch to the two frequery deflection $MF = \frac{X}{X_{ST}} = \frac{1}{\sqrt{(1-(\frac{H}{L})^2)} + (\frac{S_{SL}}{L_{N}})^2}}$ 2 22 MF=X XS 1 **ナビ**ん 0 х (их я) Ц/2 1- 2 мдх Ц Сих) H/ ZZ) JKKn to Referen 31 / CXH must for

bject Title : Subject Code : Ouestion Marks Solution Number Allocated 105) N=54N, M=5.5Kg, K=1100 H/m. C= 77 NJA. o) N= [K/m=[1110]= 14.1 rad/su - (2) b) $\gamma_{r=2} \gamma_{8+} = \beta_{8+} = \beta_{8+} = \beta_{1} \kappa = \frac{5}{110^{9}} = \frac{0.0045}{155.1}$ 2×5.5×14,1 = 0.000029 9 Phase angle: \$=rtan (255 4/42) = 90 $\phi) \mapsto p = H_{1} \sqrt{1+2\varsigma^{2}}.$ = 14.1 (1+26492 4.15 Vall. 5 e) Peals omplitude - XP= 1.17 Soxis m. (2) 1) Phase for people complitude tonpr = V1+222 $= \sqrt{1+2(0,09)}^{1}$ = - 1. 4.9 mo, /p= 68 - (MGD