Model Question Paper-I/II with effect from 2021 (CBCS Scheme)

USN \square

First Semester __BE__ Degree Examination Subject Title: Basic Electrical Engineering

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 02.
03.

Module -1			Marks
Q. 01	a	With respect to DC circuit, state and explain Kirchhoff's law.	6
	b	A sinusoidally varying alternating voltage is given by, $v(t)=V_{m} \sin \omega t$, obtain its RMS value of voltage in terms of maximum value.	8
	c	A resistance R is connected in series with a parallel circuit comprising two resistances of 12Ω and 8Ω respectively. The total power dissipated in the circuit is 70 W when the applied voltage is 20 V . Calculate R.	6
OR			
Q. 02	8	A load resistance $R_{L} \Omega$ is connected across the source V_{S} with internal resistance $R_{\text {int }}$ in series with source; obtain the condition that the power transferred to load from source is maximum.	6
	6	A pure inductor excited by sinusoidally varying AC voltage, show that the average power consumed by inductor is zero.	8
	c	Two resistors are connected in parallel and a voltage of 200 V is applied to the terminals. The total current taken is 2.5 A , and the power dissipated in one of the resistor is 1500 W . What is the resistance of each element?	6
Module-2			
Q. 03	a	With the help of phasor diagram, show that the current drawn by the R-L series circuit, lags the applied voltage by an angle \emptyset with respect to voltage.	8
	b	A voltage of 125 V at 60 Hz is applied across a non-inductive resistor connected in series with a capacitor. The current is 2.2 A . The power loss in the resistor is 96.8 W , and that in the capacitor is negligible. Calculate the resistance and the capacitance.	6
	c	A three single phase balanced load connected in three phase three wires star form, with the help of phasor diagram, obtain the relationship between line and phase quantities of voltage and current.	6
OR			
Q. 04	a	With the help of phasor diagram, show that the current drawn by the R-C series circuit, leads the applied voltage by an angle \varnothing with respect to voltage.	8
	b	Two circuits, the impedances of which are given by $Z_{1}=10+j 15 \Omega$ and $Z_{2}=6-j 8 \Omega$, are connected in parallel. If the total current supplied is 15 A , what is the power taken by each branch.	6
	c	Three phase power consumed by the balanced load is given by $P=\sqrt{3} V_{L} I_{L} \cos (\phi)$ watts, then show that two wattmeter sufficient to measure three phase power P.	6
Module-3			
Q. 05	a	With a neat diagram, explain the constructional details of DC generator.	8
	b	A shunt generator delivers 50 KW at 250 V and 400 rpm . The armature and shunt field resistances are 0.02Ω and 50Ω respectively. Calculate the speed of the machine running as a shunt motor and taking 50 KW input at 250 V . Allow 1 V brush for contact drop.	6
	c	For the single phase transformer, obtain an expression for EMF induced in either primary side or secondary side.	6
OR			

Q. 06	a	A dc motor running with a speed of N rpm , obtain an expression for EMF induced in the armature winding.	8
	b	A 4-pole, 500 V , shunt motor has 720 wave-connected conductors on its armature. The full-load armature current is 60 A , and the flux per pole 0.03 Webers. The armature resistance is 0.2Ω, and the contact drop is 1 V per brush. Calculate the full load speed of the motor.	6
	c	To operate the transformer in maximum efficiency always, derive at what condition, this can be achieved.	6
		Module-4	
Q. 07	a	With the help of neat diagram, explain the constructional details of three phase induction motor.	6
	b	A three phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is given to three induction motor with 4 pole running and runs at 1440 rpm . Determine the speed of the rotor and frequency of the rotor current.	6
	c	With the help of diagram, explain the construction details of salient and non-salient generator.	8
OR			
Q. 08	a	An alternator running at Nrpm , induces an emf in the armature conductors of the machine and obtain an expression of induced emf.	6
	b	A 3-phase 16-pole alternator has a star connected winding with 144 slots and 10 conductors per slot. The flux per pole is 0.03 webers, sine-distributed, and the speed is 375 rpm . Find the frequency, and the phase and line voltages.	6
	c	When a three phase supply given is given to the three phase induction motor, explain how a rotating magnetic field produces in the airgap of the machine.	8
Module-5			
Q. 09	a	With the help of block diagram, discuss low voltage distribution system (400 V and 230 V) for domestic, commercial, and small-scale industry.	6
	b	List out the power rating of household appliances including air conditioners, PCs, laptops, printers, etc. Find the total power consumed.	6
	c	Why earthing is need in a building service. With neat diagram explain the pipe earthing.	8
OR			
Q. 10	a	In a domestic consumers end, discuss how two-part electricity tariff imposed to calculate electricity bills.	6
	b	Discuss how electricity bill is calculated based on "unit" which is consumption of electrical energy for domestic consumers.	6
	c	With a neat circuit diagram, explain the operation of MCB and RCCB	8

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome

Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome
Q. 1	(a)	L2	C01	P01
	(b)	L2	C01	PO2
	(c)	$\begin{aligned} & \hline \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \hline \end{aligned}$	CO1	PO2
Q. 2	(a)	L2	C01	P01
	(b)	L2	C01	PO2
	(c)	$\begin{aligned} & \hline \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \hline \end{aligned}$	C01	PO2
Q. 3	(a)	L2	C01	PO2
	(b)	$\begin{aligned} & \hline \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \hline \end{aligned}$	C01	PO2
	(c)	L2	C01	PO2
Q. 4	(a)	L2	C01	PO2
	(b)	L1	CO1	PO2

Subject Code-21ELE13/23

		L2	C01	
	(c)	L2	C01	PO2
Q. 5	(a)	L2	CO2	PO2
	(b)	$\begin{aligned} & \hline \text { L1 } \\ & \text { L2 } \end{aligned}$	CO2	PO2
	(c)	L2	CO2	PO2
Q. 6	(a)	L2	CO2	PO2
	(b)	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \end{aligned}$	CO2	PO2
	(c)	L2	CO2	PO2
Q. 7	(a)	L2	CO2	PO2
	(b)	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \end{aligned}$	CO2	PO2
	(c)	L2	CO2	PO2
Q. 8	(a)	L2	CO2	PO2
	(b)	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \end{aligned}$	CO2	PO2
	(c)	L2	CO2	PO2
Q. 9	(a)	L2	CO3	P01
	(b)	L2	CO4	P02
	(c)	L2	C04	P01
Q. 10	(a)	L2	CO3	PO2
	(b)	L2	CO4	PO2
	(c)	L2	C04	PO2
Bloom's Taxonomy Levels		Lower order thinking skills		
		Remembering (knowledge): L_{1}	Understanding Comprehension): L_{2}	$\begin{aligned} & \text { Applying } \\ & \text { (Application): } L_{3} \end{aligned}$
		Higher order thinking skills		
		Analyzing (Analysis): L_{4}	Valuating (Evaluation): L_{5}	Creating (Synthesis): L_{6}
6Ftom				

Karnatak Law Society's
Vishwanathrao Desppand Institute of. Technology, Haliyal.
Department of Electrical \& Electronics Engineering.
Sem - I.
Subject - Basic Electrical Engineering
Code - 21 ELE 13
Prepared by,
Prop Rajeshwari N.
Module -01
Q La) With rupect to $D C$ circuit, state $\&$ explain Kirchhoff's law. [O6 Marks]
i) Kirchhoff's Current Law [BCL]

The algebraic sum of all the currents meeting
any junction of an electrical circuit in zero. at any junction of an electrical circuit in zero. ie $\sum I=0$

- Incoming currents are taken tie.
- Outgoing currents are taken - Ne.

Then, $I_{1}+I_{2}-I_{3}-I_{4}=0$

$$
\begin{equation*}
\text { or } I_{1}+I_{2}=I_{3}+I_{4} \tag{1}
\end{equation*}
$$

From eqn: (1) KCL can also be defined as At any junction of an electrical circuit, the sum of all the currents interning the junction in equal to the sum of all the currents leaving the junction.
ii) Kirchhoff's Voltage Law [SVL]

In any closed electrical circuit, the algebraic Sum of all the coo's $\&$ the resistive drops in equal to zero.

$$
\text { ie } \sum E+\sum I R=0 \text {. }
$$

for loup abcda:

$$
E_{1}-I_{1} R_{1}-I_{2} R_{2}=0 .
$$

For loop dcefd:

$$
I_{2} R_{2}-I_{3} R_{3}-E_{2}=0
$$

QI) A sinusoidally varying alternating voltage is giver by, $V(H)=V_{m} \sin w t$, obtain its RMs value of voltage in terms of maximum value. [08 Marks].
The equation for the alternating voltage representing the sinusoidal waveform shown in Fig. is

$$
v(t)=V_{m} \sin \omega t=V_{m} \sin \theta
$$

The effective value of this voltage is given by,

$$
\begin{aligned}
V^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} v^{2} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} V_{m}^{2} \sin ^{2} \theta \cdot d \theta \\
& =\frac{V_{m}^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{1-\cos 2 \theta}{2} \cdot d \theta \\
& =\frac{V_{m}^{2}}{4 \pi}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{2 \pi}=\frac{V_{m}^{2}}{4 \pi}[2 \pi-0-(0-0)] \\
V^{2} & =\frac{V_{m}^{2}}{2} \Rightarrow V=\frac{V m}{\sqrt{2}}=0.707 \mathrm{Vm}
\end{aligned}
$$

The RMS value of current is 0.707 times its maximum value.

Q 1 c) A resistance R is connected in series with a parallel circuit comprising two resistance of 12Ω \& 8Ω respectively. The total power dissipated in the circuit is low when the applied voltage is 20V. Calculate R. ${ }_{12} 06$ Marks $]$

$$
P=70 \mathrm{~W} .
$$

We have, $P=V^{2} / R_{\text {total }}$

$$
\therefore R_{\text {Total }}=\frac{v^{2}}{P}=\frac{20^{2}}{70}
$$

$$
\text { Also, } R_{\text {Total }}=R+\left[\frac{12 \times 8}{12+8}\right]
$$

$$
R_{\text {Total }}=5.71 \Omega
$$

ic $\quad 5.71=R+4.8$

$$
\therefore R=0.91 \Omega .
$$

Q2a) A wad resistance $R_{L} \Omega$ in connected across the source Vs with internal resistance R int in series with source. Obtain the condition that the power transfe -reed to the load from source is maximum. [OG Marks]
Maximum power transfer theorem states that, the $D C$ voltage source will deliver maximum power to the variable load resistor only when the load resistance is equal to the source resistance.

The amount of power dissipated across the load resistor $\dot{\text { is }}$,

$$
P_{L}=I^{2} R_{L}
$$

Substitute, $I=\frac{V_{S}}{R_{\text {int }}+R_{L}}$ in the above equation,

$$
\begin{align*}
& P_{L}=\left[\frac{V / S}{R_{\text {int }}+R_{L}}\right]^{2} \cdot R_{L} \\
& P_{L}=V_{S}^{2}\left[\frac{R_{L}}{\left(R_{\text {int }}+R_{L}\right)^{2}}\right] \tag{1}
\end{align*}
$$

Que Maximum power transfer is obtained when,

$$
\begin{aligned}
& \quad \frac{d R_{L}}{d R_{L}}=0 \\
& \frac{d P_{L}}{d R_{L}}=V_{S}^{2}\left[\frac{\left(R_{\text {int }}+R_{L}\right)^{2} \times 1-R_{L} \times 2\left(R_{\text {int }}+R_{L}\right)}{\left(R_{\text {int }}+R_{L}\right)^{4}}\right]=0 \\
& \Rightarrow\left(R_{\text {int }}+R_{L}\right)^{2}-2 R_{L}\left(R_{\text {int }}+R_{L}\right)=0 . \\
& \Longrightarrow\left(R_{\text {int }}+R_{L}\right)\left(R_{\text {int }}+R_{L}-2 R_{L}\right)=0 \\
& \Rightarrow \quad R_{\text {int }}-R_{L}=0 \\
& \quad \text { or } \quad R_{L}=R_{\text {int }}
\end{aligned}
$$

Thus, maximum power transfer is obtained when $R_{L}=$ Lint.

Q2b) A pure inductor excited by sinusoidally varying $A C$ voltage, show that the average power consumed by inductor is zero. [0 8Marks]
Consider a coil of pure inductance L benrys, across which an alternating voltage $e=E_{m} \sin \omega t$ is applied
al shown.

Because of which an alternation current i flows through it.
This current produces an alternating flux, which links the coil f hence an emf e^{\prime} is induced in it, which opposes the applied voltage $\&$ is given by,
$e=E$ sin wi

$$
\begin{aligned}
& e=E_{m} \sin \omega t \\
& e^{\prime}=-L \cdot \frac{d i}{d t}=-e \\
& \therefore \quad e=L \cdot \frac{d i}{d t} \\
& d i=\frac{e}{L} \cdot d t=\frac{1}{L} \cdot E_{m} \sin \omega t \cdot d t \\
& i=\frac{E_{m}}{L} \int \sin \omega t \cdot d t \\
&=\frac{E_{m}}{\omega L}[-\cos \omega t] \\
&=\frac{E_{m}}{\omega L} \sin (\omega t-\pi / 2) \\
& i=I_{m} \sin (\omega t-\pi / 2)
\end{aligned}
$$

where $X_{L}=\omega L=2 \pi f L=$ inductive reactance in Obs's. The instantaneous power is given by

$$
\begin{aligned}
& P=e \times i=E_{m} \sin \omega t \cdot I_{m} \sin (\omega t-\pi / 2) \\
& P=E_{m i m} \sin \omega t \cdot(-\cos \omega t) \\
& P=-\frac{1}{2} E_{m i n} \sin 2 \omega t
\end{aligned}
$$

The eqn. for ' P ' consist of a quantity which is periodically varying \& having a frequency two times the frequency of applied voltage f whose average value is zero. Hence power consumed by a pure inductor is zero.

Q 2c) Two resistors are connected in parallel \& a voltage of 200 V is applied to the terminals. The total current taken is 2.5 A, \& power dissipa -ted in one of the resistor is 1501N. What is the resistances of each element. [of Marks]

We have, $P_{1}=V I_{1}$

$$
\begin{aligned}
I_{1} & =\frac{P_{1}}{V}=\frac{150}{200} \\
I_{1} & =0.75 \mathrm{~A} . \\
\therefore R_{1} & =\frac{V}{I_{1}}=\frac{200}{0.75}=266.66 \Omega . \\
I_{2} & =I-I_{1}=2.5-0.75=1.75 \mathrm{~A} . \\
\therefore R_{2} & =\frac{V}{I_{2}}=\frac{200}{1.75}=114.2 \Omega . \\
R_{1} & =266.66 \Omega \quad R_{2}=114.2 \Omega
\end{aligned}
$$

Module-2
Q Bay With the help of phasor diagram, show that the current drawn by the $R-L$ series circuit lags the applied voltage by an angle ϕ with respect to voltage. [08 Marks]
Consider an R-L series circuit to which an altemating voltage of rms value E is applied due to which an rms value of current I flows through the circuit.

The vector diagram taking I as a reference vector is also shown.

The vector diagram consist of three voltages, $E_{R}=\Sigma R$ which is inphase with current, $E_{L}=I X_{L}$ which leads current by 90°. The vector sum of these two voltages in the applied voltage
$E=I Z$, where z_{z} is impedance of the circuit $E=I z$, where z is impedance of the circuit. From the vector diagram, we observed that the current lags the voltage by an angle ϕ. If $e=E_{m} \sin$ wi then $i=I_{m} \sin (\cot -\phi)$.

Q3b) A voltage of 125 V at 60 Hz in applied across a non-inaractive resistor connected in series with a capacitor. The current is 2.2 A . The power loss in the resistor is 96.8 W \& that in the capacitor in negligible. Calculate the resistance \& capacitance [6 Marts]

$$
\begin{aligned}
& P=I^{2} R \\
& R=I^{2} / P=2.2 / 96.8 \\
& R=0.05 \Omega
\end{aligned}
$$

$$
Z=\frac{V}{I}=\frac{125}{2.2}=56.81 \Omega
$$

We have, $Z=\sqrt{R^{2}+x_{c}^{2}}$

$$
\begin{aligned}
\therefore \quad X_{c} & =\sqrt{z^{2}-R^{2}}=\sqrt{(56.81)^{2}-(0.05)^{2}} \\
X_{c} & =56.80 \Omega .
\end{aligned}
$$

We know that, $x_{c}=\frac{1}{2 \pi f c}$.

$$
\begin{aligned}
\therefore \quad c & =\frac{1}{2 \pi f \cdot \times c} \\
& =\frac{1}{2 \pi \times 60 \times 56.80} \\
c & =46.7 \mu \mathrm{~F} .
\end{aligned}
$$

Q3c> A three single-phase balanced load connected in 3-中 three wire star form, with the help of phasor diagram obtain the relationship between Line \& phase quantities of voltage of current. [06 Marks]

A Star connection is formed, when the ends of the three coils are joined together at point n, the other three ends being free as shown in Fig.

Let Ear, Ebon 4 Err are phase voltages of $E_{a b}, E_{b c} \& E_{c a}$ are line voll-ages.

From circuit diagram, the current is flowing through the lines are the same as the currents flowing through the phases.
Hence

$$
\begin{aligned}
\text { Line Current } & =\text { Phase Current } \\
\text { Inline } & =\text { Iphase }
\end{aligned}
$$

The vector diagram of line voltages of phase voltages for the star connection is shown in Fig.

$$
E_{a b}=E_{a n}+E_{b b}=E_{a b}-E_{b n}
$$ Draw a perpendicular $A C$ on $O B$.

$$
\angle A O C=30^{\circ} .
$$

From $\triangle A O C$,

$$
\begin{aligned}
& E_{a b}^{\prime} \cos 30^{\circ}=\frac{O C}{O A}=\frac{O B / 2}{O A}=\frac{E_{a b} / 2}{E_{a n}} \\
& \therefore E_{a b}=2 E_{a n} \cos 30^{\circ}=2 E_{a n} \times \frac{\sqrt{3}}{2}=\sqrt{3} E_{a n} \\
& \therefore E_{l}=\sqrt{3} E_{p h} \\
& \text { Sine Voltage }=\sqrt{3} \times \text { phase Voltage. }
\end{aligned}
$$

Qa) With the help of phasor diagram, show that the current drawn by the $R-C$ series circuit leads the applied voltage by an angle ϕ with respect to voltage.
[08 Marks O .

Consider $R-C$ series circuit to which an alternatis - Vg voltage of oms value E is applied, due to which an rms value of current I flows through the circuit.

From the vector diagram, we observe that the current leads the voltage by an angle ϕ.

If. $e=E_{m} \sin \omega t$
then $i=i m \sin (\omega t+\phi)$
From the above egos. we conclude that, in $R-C$ series circuit the current leads the voltage by an angle ϕ.

Q 4bो Two circuits the impedances of which are given by $z_{1}=(10+j 15) \Omega$ \& $z_{2}=(6-j 8) \Omega$ are Connected in parallel. If the total current supplied is 15A , what is the power taken by each branch? [06 Marks]

$$
\begin{aligned}
z_{1} & =10+j 15=18.02 \angle 56.3^{\circ} \\
Z_{2} & =6-j 8=10 \angle-53.13^{\circ} \\
I_{1} & =I\left[\frac{z_{2}}{z_{1}+z_{2}}\right] \\
& =15\left[\frac{10 \angle-53.13^{\circ}}{17.46 \angle 23.62}\right] \\
& =15[0.572 \angle-76.75] \\
I_{1} & =8.58 \angle-76.75
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =I\left[\frac{z_{1}}{z_{1}+z_{2}}\right] \\
& =15\left[\frac{18.02 \angle 56.3}{17.46 \angle 23.62}\right] \\
& =15[1.03 \angle 32.68] \\
I_{2} & =15.45 \angle 32.68^{\circ} \\
Z_{\text {Total }} & =\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{180.2 \angle 3.17}{17.46 \angle 23.62}=10.32 \angle-20.45^{\circ} .
\end{aligned}
$$

Applied Voltage $V=\left[2_{\text {Total }}=15 \times 10.32 L-20.45^{\circ}\right.$

$$
v=154.8 \angle-20.45^{\circ}
$$

$$
\begin{aligned}
P_{1} & =V S_{1} \cos \phi=54.8 \\
& =154.8 \times 8.58 \times \cos [-20.45+76.75] \\
P_{1} & =736.93 \text { Watts } \\
P_{2} & =V I_{2} \cos \phi \\
& =154.8 \times 15.45 \times \cos [-20.45-32.68] \\
P_{2} & =1434.96 \text { Watts }
\end{aligned}
$$

Q4c) Three phase power consumed by the balanced load is given by $P=\sqrt{3} V_{L} I_{L} \cos \phi$ watts, then. Show that two wattmeter sufficient to measure threephase power [06 Marks]

Consider a star connected balanced load as shown in fig. and also phasor diagram.

The wattmeter reading wi wi given by,

$$
|a|_{1}=E_{a b} I_{a} \cos \angle E_{a b}+I_{a}
$$

Similarly, $\hat{N}_{2}=E_{b c} \hat{I}_{c} \cos \angle E_{b c} \& \hat{I}_{c}$
The angle between Eab \& I_{a} and Exc \& Ic is found as shown in vector diagram.
Assuming the load to be inductive, Ia lags Eam by angle ϕ. Hence, the angle between Eab 4 Ia is $(30-\phi)$.

$$
\therefore \quad \mid N_{1}=E_{a b} I_{a} \cos (30-\phi)=E_{l} I_{l} \cos (30-\phi)
$$

Again, assuming load to be inductive, Ic logs $\left(\begin{array}{ll}(1) \\ \end{array}\right.$ by angle ϕ. Hence the angle between $E_{b c} \& I_{c}$ in $(30+\phi)$

$$
\begin{equation*}
\therefore M I_{2}=E_{c b} I_{c} \cos (30+\phi)=E_{l} I_{l} \cos (30+\phi) \tag{2}
\end{equation*}
$$

Adding eqns. (1) \& (2),

$$
\begin{aligned}
w_{1}+w_{2} & =E_{l} I_{l}[\cos (30-\phi)+\cos (30+\phi)] \\
& =E_{l} S_{l} \cdot 2 \cos 30 \cdot \cos \phi \\
& =E_{l} I_{l} \cdot 2 \cdot \frac{\sqrt{3}}{2} \cdot \cos \phi \\
I_{1}+l_{1} l_{2} & =\sqrt{3} E_{l} I l \cos \phi=3-\phi \text { power }
\end{aligned}
$$

Module -03 details of. $D C$ generator [O8 Marks] Terminal box. details of $D C$ generator [O8 Marks. Yoke.
The De generator consist of
i) Yolse
ii) Pole
iii) Armalius
iv) Commutator
vi) shaft

Yolse:
It is the outer cover for $D C$ generator \& is cylindrical in shape. For small generator it is madeup of cast iron \& for lagged generators it is made up of cast steel.

Pole: These are madeup of alloy steel.
It consist of pole core and pole shoe. The pole in laminalid to reduce eddy current losses. The shape of pole shoe is cylindrical at the bottom, so that flux produced is spreadout uniformly in the ailgap. When a direct current is passed through the field coils pole core becomes an electromagnet o produces the nair flux required for generation of emf.
Armature: It consist of armaluire core \& armaliere winding. The armature core is made up of high permiability \& low loss silicon steel lamination which are usually 0.4 to 0.5 mm thick $\&$ are insulated from one another by varnish.
The armature conductors are placed in the slots of the armaluise f are connected together either as lap winding or wave winding.

Commutator: The commutator is cylindrical in shape \& madup of hard drawn copper which are insulated from one another f from the shaft by mica strips. The segments are connected to the armaluie - Conductors through rises. The commutator converts alternating emf generated in the armalize winding into direct current voltage in the external circuit.
Shaft:" The shaft of the $D C$ generator is rotated by prime mover due to which armaliee fixed to it also rotates.

Q5b)A shunt generator delivers 50 kW at 250 V I 400 rpm . The armature \& shunt field resistances are $0.02 \Omega \& 50 \Omega$ respectively: Calculate the speed of the machine running as a shunt motor f taking sokwl input at 250V. Allow IV brush for contact drop [06 Marks]
As a generator, $I_{s h}=\frac{250}{50}=5 \mathrm{~A}$.

$$
\begin{aligned}
& I_{L 1}=\frac{P}{V}=\frac{50000}{250}=200 \mathrm{~A} . \\
& I_{a 1}=I_{L 1}+I_{S h}=200+5=205 \mathrm{~A} . \\
& E_{g}=V+S_{a 1} R_{a}+B C D \\
&=250+(205 \times 0.02)+(2 \times 1) \\
& E_{g}= 256.1 \mathrm{~V}
\end{aligned}
$$

As a Motor, $I_{L 2}=\frac{P}{V}=\frac{50000}{250}=200 \mathrm{~A}$.

$$
I_{a 2}=I_{L 2}-I_{s h}=200-5=195 \mathrm{~A}
$$

$$
\begin{aligned}
\therefore E_{b} & =V-I_{a 2} R_{a}-B C D \\
& =250-(195 \times 0.02)-(2 \times 1) \\
E_{b} & =244.1 \mathrm{~V}
\end{aligned}
$$

We know that, $\frac{E_{g}}{E_{b}}=\frac{N_{1}}{N_{2}}$

$$
\begin{aligned}
\therefore \quad \frac{256.1}{244.1} & =\frac{400}{N_{2}} \\
N_{2} & =381 \mathrm{rpm}
\end{aligned}
$$

Q5c). For the single-phase transformer, obtain an expressi -on for ENIf induced in either primacy side or secondary side. [OG Marks]
When the alternating voltage $v_{1}=v_{m}$ sinwot of rms value $V_{1}=V_{m} / \sqrt{2}$ is applied to the primacy windir of the transformer, the alternating current flowing through the primary winding produces an alternation flux ϕ which links both primary winding \& secondary winding. Hence an emf e_{1} is induced in the primary winding \& an emf e_{2} is induced in the secondly winding. The equation for e, i,

$$
\begin{equation*}
e_{1}=-N_{1} \cdot \frac{d \phi}{d t} \tag{1}
\end{equation*}
$$

The ego. for the flux is given by,

$$
\phi=\phi_{m} \sin \omega t
$$

Substituting this value of ϕ in eqn.(1).

$$
\begin{aligned}
e_{1} & =-N_{1} \cdot \frac{d \phi}{d t}=-N_{1} \cdot \frac{d}{d t}\left(\phi_{m} \sin \omega t\right) \\
& =-\omega N_{1} \phi_{m} \cos \omega t \\
e_{1} & =2 \pi f N_{1} \phi_{m} \sin (\omega t-90) \quad(2)
\end{aligned}
$$

The magnitude of the maximum value of the emf induced in the primary winding in given by,

$$
E_{m 1}=2 \pi f N_{1} \phi_{m}
$$

The ms value of the emf induced in the primary winding is given by,

$$
\begin{aligned}
& E_{1}=\frac{E_{m 1}}{\sqrt{2}}=\frac{2 \pi f N_{1} \phi_{m}}{\sqrt{2}} \\
& E_{1}=4.44 f \phi_{m} N_{1} \text { volts. } \\
& E_{2}=4.44 f \phi_{m} N_{2} \text { volts. }
\end{aligned}
$$

Q6a) $A D C$ motor running at with a speed of N rpm, obtain an expression for EMF induced in the armature winding [08 Marks]
Let $z=$ Total no. of armature conductors.
$\phi=$ Useful flux per pole in Webers.
$N=$ Speed of armature in rpm.
$P=$ No. of poles.
$A=$ No. of parallel paths.
The flux cut by a conductor in one revolution

$$
=\phi p=d \phi
$$

The time taken by conductor to make one revolution

$$
=60 / \mathrm{N} \sec =d t
$$

Hence $E M F$ induced in one conductor $=\frac{d \phi}{d t}=\frac{\phi P}{60 / N}$

$$
=\frac{\Phi P N}{60} \text { volts. }
$$

The emf induced per parallel path
$=$ EMF induced per conductor x NO. of parallel path $\$$

$$
E=\frac{\Phi P N}{60} \times \frac{z}{A}=\frac{\Phi z N P}{60 A} \text { volts. }
$$

For lap winding, $A=P \Rightarrow E=\frac{\phi 2 N}{60}$ volts
For wave winding, $A=2 \Longrightarrow E=\frac{\phi 2 N P}{120}$ volts

Q6b) A 4-pole, 500 V shunt motor has 720 wave connected conductors on its armature. The full load armature current is $60 \mathrm{~A} f$ the flux per pole is 0.03 webers. The armature resistance is 0.2Ω \& the contact drop is IV per brush. Calculate the full load speed of the motor. [06 marks]
We have,

$$
\begin{aligned}
E_{b} & =V-I_{a} R_{a}-B C D \\
& =500-(60 \times 0.2)-(2 \times 1) \\
E_{b} & =486 \mathrm{~V}
\end{aligned}
$$

But $E_{b}=\frac{\phi 2 N P}{60 \mathrm{~A}}$

$$
\begin{gathered}
486=\frac{0.03 \times 720 \times N \times 4}{60 \times 2} \\
N=675 \mathrm{rpm}
\end{gathered}
$$

Q6c) To operate the transformer in maximum efficiency always, derive afwhat condition, this can be achieved. [06 Marls]
The efficiency of a transformer at any load \& p.f. is defined as the ratio of the output at the secondary winding to the power input to the primary winding

$$
\text { Efficiency } \eta=\frac{\text { Power output }}{\text { Power Input }}
$$

Power input $=V_{1} i_{1} \cos \phi_{1}$

$$
\begin{aligned}
\eta & =\frac{\text { Input }- \text { Losses }}{\text { Input }} \\
& =\frac{\text { Input }- \text { Copper Loss }- \text { Iron Loss }}{\text { Input }} \\
& =\frac{V_{1} I_{1} \cos \phi_{1}-I_{1}^{2} R_{01}-V_{1} V_{i}}{V_{1} \Phi_{1} \cos \phi_{1}} \\
& =1-\frac{I_{1} R_{01}}{V_{1} \cos \phi_{1}}-\frac{V_{i}}{V_{1} I_{1} \cos \phi_{1}}
\end{aligned}
$$

The efficiency is maximum, when $\frac{d \eta}{d I_{1}}=0$.

$$
\text { ie, } \frac{d \eta}{d \hat{N}_{1}}=0-\frac{R_{01}}{V_{1} \cos \phi_{1}}+\frac{w_{i}}{V_{1} \tilde{I}_{1}^{2} \cos \phi_{1}}=0
$$

$$
\frac{R_{01}}{V_{1} \cos \phi_{1}}=\frac{w_{i}}{V_{1} J_{1}^{2} \cos \phi_{1}}
$$

$$
\begin{aligned}
& W_{i}^{0}=I_{1}^{2} R_{01} \\
& \text { Iron losses }=\text { Copper Losses }
\end{aligned}
$$

Module - Ot
Q.7 a) With the help of neat diagram explain the construction Hal details of 3-中 Induction motor. [06 Marks] A 3-中 Induction motor mainly consist of two parts. i) Stator \& iii Rotor.

* Stator:

It consist of steel frame, which encloses a hollow, cylindrical core made up of th in lamination of silicon steel to reduce eddy current loss o hysteresis loss. A large no. of uniform slots are cut on the inner periphery of the core in which stator conductors
 are placed which are star/delta winding.

* Rotor: is Squirrel Cage Rotor \& ios Phase wound Rotor.

Squirrel Cage Rotor:
90% of the induction motors are of squirrel cage because of simple of rugged construction.

It consist of cylindrical laminated core with parallel slots for carrying heavy bass of copper or aluminium rotor conductors. The slots are slightly slewed, which helps in two ways. it it reduces noise due to magnetic hum \& makes the rotor to nun quietly. ii) it reduces the locking tendency between rotor $\&$ Stator.
*Phase Wound Rotor.
This rotor is laminated, cylindrical core having uniform slots on its outer periphery. A three phase winding which is star connected is placed in these slots. The open ends of the star winding are brought out \& connected to three insulated slip rings mounted on the shaft of the motor with carbon brushes resting on them. The three brushes are externally connected to a 3-ф star connected rheostat, which is used as a starter during the starting period.

Q7b) A 3-中 400v, 50 Hz supply is given to $3-1$ IM with 4 pole runs at 1440 rpm. Determine the speed of the rotor \& frequency of rotor current [06 Marks]

$$
\begin{aligned}
& N_{s}= \frac{120 f}{P}=\frac{120 \times 50}{4}=1500 \text { rpm } \\
& \therefore \text { slip } s=\frac{N_{s}-N}{N_{s}}=\frac{1500-1440}{1500}=0.04 \\
& S \text { Slip }=0.04=4 \%
\end{aligned}
$$

Frequency of Rotor current $f^{\prime}=S f=0.04 \times 50$

$$
f^{\prime}=2+2
$$

Qc) with the help of diagram explain construction details of salient \& Don-salient generator. [08 Marks]

* Salient generator

This type of rotor is wed in low o medium speed alternator (300 to 600 rpm$)$. It has 1 large no. of projecting poles having their cores bolted to a heavy magnetic wheel of cast iron or steel. These have large diagmeter \& short axial length. The poles are laminated to reduce eddy current losses \& coils are wound on these poles, The DC voltage required to excite pole wits is obtained from pilot exciter which is fixed on the shaft of the alternator itself. The D voltage in fed to the field wits through two carbon brushes, which slide on two slip rings fixed to the shaft.

* Non-Salient / Smooth cylindrical.

This type of rotor is usually driven by turbine $中$ rotates at very high speed $C 1500$ to 3000 rpm). The rotor consist of steel lamination which ale insulated from each other \& pressed together to form a cylindrical core having no. of slots on its outer periphery. for accommodating field winding. It has small diameter f large axial length. Two or four regions curresponding to the central polar areas are left unslotted of these areas are surrounded by the field windings placed in the slots.

Salient Pole.
Non-Salient Pole.

28 a). An alternator running at N rpm, induces an emf in the armaluel conductors of the machine I obtain an expression of induced emf: [06 Marks]
Let, $z=$ No. of stator conductors per phase $P=$ No. of poles
$f=$ frequency of induced emf in $H z$. $\phi=$ flux per pole in Llb.

The flux cut by the conductor in one revolution

$$
=P \phi=d \phi
$$

The time taken for one revolution $=60 / \mathrm{sec}=d \mathrm{E}$
\therefore The average emf induced in one conductor

$$
=\frac{d \phi}{d t}=\frac{P \phi N}{60} \text { volts. }
$$

$$
\begin{aligned}
\text { Average emf induced per phase } & =\frac{\phi \mathbb{P} P}{60} \times Z \\
& =\frac{\phi P Z}{60} \times \frac{120 f}{P} \\
& =2 f \phi Z \text { volts. }
\end{aligned}
$$

For a sinusoidal wave, $\frac{E_{r m s}}{E_{a v}}=1.11$
\therefore rms value of emf induced per phase

$$
=1.11 \times 2 f \phi z=2.22 f \phi z
$$

\therefore EMF equation of an alternator in,

$$
\begin{aligned}
E_{p h} & =2.22 f \phi z \text { volts. } \\
& =4.44 f \phi 9 \text { volts }
\end{aligned}
$$

where $T=$ no. of turns $=2 / 2$

Q 8b) A. 3-中 16 pole alternator has a star connected winding with 144 slots 410 conductors pei slot. The flux per pole is 0.03 Vb , sine distributed \& the speed in 375 rpm . Find the frequency $\&$ phase \& line voltages. [06 Marks]

$$
\begin{aligned}
& f=\frac{P N}{120}=\frac{16 \times 375}{120}=50 \mathrm{~Hz} \\
& n=\frac{144}{3 \times 16}=3, \quad z=\frac{144 \times 10}{3}=480 \\
& \alpha=\frac{180}{3 n}=\frac{180}{3 \times 3}=20^{\circ} \\
& h_{d}=\frac{\sin \frac{n \alpha}{2}}{n \cdot \sin \frac{\alpha}{2}}=\frac{\sin \frac{3 \times 20}{2}}{3 \cdot \sin 20 / 2}=0.96
\end{aligned}
$$

The winding u_{i} assumed to be full pitched

$$
\begin{aligned}
E_{p h} & =2.22 \text { phd } \phi z \\
& =2.22 \times 0.96 \times 1 \times 50 \times 30 \times 10^{3} \times 480 \\
E_{p h} & =1534.46 \text { volts } \\
E_{l} & =\sqrt{3} E_{p h}=\sqrt{3} \times 1534.46=2657.77 \text { volts } . \\
E_{l} & =2657.77 \text { volts }
\end{aligned}
$$

Q \& c> When a 3-中 Supply wi given to 3-中 Induction Motor, explain how a rotating magnetic field produces in the air gap of the machine. [os Marks]

When a $3-\phi$ supply is given to $3-\phi$ winding of stator, a rotating magnetic field of constant magni -rude 4 rotating with synchronous speed u^{i} produced. Let us consider $3-\phi$ winding connected to $3-\phi$ supply \& fluxes produced in the three winding are shown in Fig.

The assumed live directions of fluxes are shown below

The resultant flux of these 3 fluxes at any instant is given by the vector sum of individual fluxes $\phi_{A}, \phi_{B} \psi^{\prime} \phi_{C}$.
i) when $\theta=0^{\circ}$,

$$
\begin{aligned}
& \phi_{A}=0 \\
& \phi_{B}=\phi_{m} \sin (-120)=-\frac{\sqrt{3}}{2} \phi_{m} \\
& \phi_{C}=\phi_{m} \sin (-240)=\frac{\sqrt{3}}{2} \phi_{m}
\end{aligned}
$$

These values of flume at this instant \& their resultant are shown. The resultant flue ϕ_{r} Lies along K-axis $\&$ its magnitude is given by,

$$
\begin{gathered}
\phi_{r}=2 \times \frac{\sqrt{3}}{2} \phi_{m} \cos 30^{\circ}=\frac{3}{2} \phi_{m} \\
\phi_{r}=1.5 \phi_{m}
\end{gathered}
$$

ii) when $\theta=60^{\circ}$.

$$
\begin{aligned}
& \phi_{A}=\frac{\sqrt{3}}{2} \phi_{m} \\
& \phi_{B}=-\frac{\sqrt{3}}{2} \phi_{n} \\
& \phi_{C}=0
\end{aligned}
$$

$$
\text { ii) when } \theta=60^{\circ} \text {. }
$$

It is observed that resultant flux has rotalid by 60° in the clockwise direction f its magnitude is $\phi_{r}=1.5 \phi_{m}$
iii) Wither $\theta=120^{\circ}$,

$$
\begin{aligned}
& \phi_{A}=\frac{\sqrt{3}}{2} \phi_{m} \\
& \phi_{B}=0 \\
& \phi_{C}=-\frac{\sqrt{3}}{2} \phi_{m}
\end{aligned}
$$

The ryultant flux has rotated by another 60° ie through 120° from its original position of its magnitude is $1.5 \phi_{m}$ ivywhen $\theta=180^{\circ}$.

$$
\begin{aligned}
& \phi_{A}=0 \\
& \phi_{B}=\frac{\sqrt{3}}{2} \phi_{m} \\
& \phi_{C}=-\frac{\sqrt{3}}{2} \phi_{m}
\end{aligned}
$$

The resultant flux rotated by 180° from original position 4) its magnitude is 1.5 mm .

Thus we can conclude that as $\theta=$ wt varies from $\theta=0$ to $\theta=2 \pi$, the resultant flux also rotates with Same angular velocity w \& having constant magni -rude of $1.5 \phi \mathrm{~m}$.

Module - 05

Qa) With the help of block diagram, discuss low voltage distribution system (40 0wi 230 V) for domestic, commercial \& small-scale industry [of Maris]
The distribution system which operates on the voltage levels that are directly utilized without any further reduction. is known as Low voltage distribution system. It is part of electrical power distribution networks which carries electrical power from distribution transf - rmer to energy oneter of consumer.

The voltage level of LV distribution system in equal to the mains voltage of electrical appliances. The $L X$ distribution system in a 3-\$ 4 wive distribution network.

Most modern Low voltage distribution systems are operated at $A C$ rated voltage of $230 / 415 \mathrm{~N}$ at 50 the in India.

Components of LV Distribution system:

1) Distribution Transformer: It is a step-down transformer which has delta connected primary \& star connected secondary winding \& sends electrical power to the distributors.
2) Distributor: it is a conductor from which taping ar taken for supply to the consumers The current throughout the distributor is not constant since taping are taken at various places along its length.
3) Service Mains: It is a small cable which connects the distributors to the electricity meter of the consumer.

Q9b) Listout the power ratings of household appliances including air conditioners, PCS laptops, printers etc., find the total power consumed.
$[06$ Marks

Qacyivhy earthing is need in a building service. lith sea diagram explain the pipe earthing. [08 Marls]
Earthing

Earthing|Grounding is to connect the body of an electrical equipment to the general mass of the earth by a wire of negligible resistance. Earthing brings the body of the equipment to zero potential of thus avoids shocks to the personnel, incuse the bogly of the equipment comes in contact with live wire.
Pipe Earthing:
Fig. shows method of pipe earthing approved length f diameter us used. The size of the pipe depends on the current to be carved of the type of soil. According to ss I,
the diameter of the galvanised Earthlead pipe should not be less than. 38.1 mm \& length 2 m . it should be placed to a depth of 4.75 m . The pipe must be placed upright \& must be placed permanently in a wet - ground. The depth at (which. the pipe must be depends on the condition of the moisture in the ground The pipe at the bottom should be surrounded by broken
 pieces of colse or charcoal for a distance of about 15 cm around the pipe. Charcoal of mixed with salt, further reduces the resistances. The usual practice in to put alternate layer of. Salt f coal as shown in fig. During summer, the moisture content of the earth will be very less \& hence, in order to have effective earthing, the funnel should be filled with 3 to 4 buckets of waler.

Q 10 as in a domestic consumers end, discuss how two -part electricity tariff imposed to calculate electricity bills. [06 Marks]

The rate at which electrical energy is supplied to a consumer \dot{i} known as Tariff.
When the rate of electrical energy is charged on the bas is of maximum demand of consumer f the units consumed, it is called Noo-part Tariff.
In two part tariff, the total charge to be made from the consumer is splits into two components. fixed charges $\&$ running charges.
The fixed charges depend upon the maximum demand of the consumer while the running charges depend upon the no. of units consumed by the consumer. Thus, the consumer is charged at a certain amount per kin of maximum demand plus a certain amount per kieth of energy consumed.
ic Total Charges $=R_{s} \cdot[b \times k i N+c \times k i \times 1 t o r]$
where,
$b=$ charge per kl of maximum demand.
$c=$ charge per kiwithr of energy consumed.

Q10 by Discuss how electricity bill is calculated based on unit which is consumption of electrical energy for domestic consumers.. [06 Marks]
The electrical energy consumed is expressed as Units. I Unit = 1 kwh.
Example to calculate electricity bill.

- To calculate the power consumption of the current month, we need to subtract the current meter reading from the reading of last month.
- Once we know the exact energy consumption, we can calculate the energy charge by multiplying the units by per-unit charges.
- For example slabwise energy charges are, Rs. 4.22 for 1-100 units.
Rs. 5.02 for $101-200$ units
Rs. 5.87 for 201-300 units.
- If we have used 250 units in a month, then. energy charges will be,

$$
[(100 \times 4.22)+(100 \times 5.02)+(50 \times 5.87)]=R_{s} .1218
$$

- The total energy bill can be calculalid by adding the fined charge of Rs. 40 . to Thus making the total bill amount to be Rs. $1218+R_{s} \cdot 40=R_{s}-1258$

Q 10 c) With a neat circuit diagram, explain the operation of MCB \& RCCB. [08 Mariss]
Minialüse Circuit Breaker [MCB]
$C B$ are electrical switching devices which an used to protect the electrical equipments f circuits under overload of short circuit conditions. When normal current is flowing through t the circuit, the CB is in closed position. When over current flows, it opens so that the fault current does not flows through the circuil \& protects it.
$C B_{s}^{\prime}$ used in residential \& light commercial installation at low voltages are reffered as MCB's. These ma also be used for tripping during ground faults which' includes an extra ground fault detection with an operating mechanism to open the contacts in the events of a line to ground fault or neutral to ground fault

Residual Current Circuit Breaker [RccB].
The construction is shown in Fig. One CT core is energized by both. plate wive of neutral wire. Under normal condition, the mons of a one winding opposes the mon of the other. Then the le is no leakage Resultant moi of phase \& neutral current is 2 iso \& contacts $p_{1} n_{1}$, $f p_{2} n_{2}$ are still connected. The relay coil in connected to the third winding wound on the CT core as secondary. Under normal condition, no current circulates in the third winding. When earth lealsage occurs in the equipment, part of the phase current flows to the earth. Then neutral current is not equal to the phase current. When this difference between phase \& neutral current exceeds a preset value, the current in the third winding, the relay is energized. This activates the $C B$, f it trips. contacts $A+B$ move away from the terminals n_{1}, n_{2} \& P_{1}, P_{2}. Thus circuit is broken. Equipment is disconnected is is saved.

