Model Question Paper-III with effect from 2021 (CBCS Scheme)

USN \square
\square

FIRST/SECOND Semester BE Degree Examination ENGINEERING PHYSICS - 21PHY12/22

TIME: 03 Hours

Max. Marks: 100

Note:		1. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 2. Draw neat sketches where ever necessary. 3. Constants: Speed of Light " c " $=3 \times 10^{8} \mathrm{~ms}^{-1}$, Boltzmann Constant " k " $=1.38 \times 10^{-23}$ JK^{-1}, Planck's Constant " h " $=6.625 \times 10-34 \mathrm{Js}$, Acceleration due to gravity " g " $=9.8 \mathrm{~ms}^{-}$ 4. ${ }^{2}$, Permittivity of free space " ε_{0} " $=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$.		
Module -1			Marks	
Q. 01	a	Discuss the theory of forced oscillations and hence classify the conditions of variation of amplitude and phase with angular frequency.	9	
	b	Illustrate the generation of shock waves using the Reddy shock tube.	6	
	c	Given the damping constant of the medium $0.1 \mathrm{~kg} \mathrm{~s}^{-1}$ calculate the amplitude of the oscillations at resonance given the mass attached to the spring-mass oscillator 50 x $10^{-3} \mathrm{~kg}$, the amplitude of the applied periodic force 1 N and the period of oscillations 1 second.	5	
OR				
Q. 02	a	Applying Hooke's law arrive at the equations for the effective spring constants of Series and Parallel combinations of springs.	8	
	b	Enumerate the properties and applications of shock waves.	7	
	c	Compare the Mach number of a Jet fighter traveling with $2000 \mathrm{~km} \mathrm{hr}^{-1}$ with that of a bullet traveling with a velocity of $400 \mathrm{~ms}^{-1}$ in the same medium given the speed of sound in the medium $330 \mathrm{~ms}^{-1}$.	5	
Module-2				
Q. 03	a	Discuss the spectral distribution energy in the black body radiation spectrum and hence explain Wien's displacement law.	8	
	b	State and Explain Heisenberg's Uncertainty principle and infer on the classical and quantum mechanical measurements.	7	
	c	The kinetic energy of an electron is equal to the energy of a photon with a wavelength of 560 nm . Calculate the de Broglie wavelength of the electron.	5	
OR				
Q. 04	a	Discuss the motion of a quantum particle in a one-dimensional potential well of the infinite height and of width 'a' and also examine the quantization of energy.	10	
	b	Deduce Rayleigh-Jeans law from Planck's Law of radiation.	5	
	c	The speed of electron is measured to within an uncertainty of $2 \times 10^{4} \mathrm{~ms}^{-1}$ in one dimension. What is the minimum width required by the electron to be confined in an atom?	5	
Module-3				
Q. 05	a	Obtain the expression for energy density using Einstein's A and B Coefficients and hence draw infer on the relation $\mathrm{B}_{12}=\mathrm{B}_{21}$.	8	
	b	Discuss the attenuation and various losses in optical fibers.	7	
	c	Calculate the number of photons emitted per pulse of duration 1 microsecond given the power output of LASER 3 mW and the wavelength of laser 632.8 nm .	5	
OR				
Q. 06	a	Define Modes of Propagation and RI Profile and Distinguish between the types of optical fibers.	6	

	b	Identify the requisites of the CO2 LASER and Explain its construction and working with the help of a neat sketch and band diagram.	9	
	c	Compare the acceptance angle of an optical fiber placed in air and water given the RI of water 1.33 and the RI of core and clad 1.5 and 1.45 respectively.	5	
Module-4				
Q. 07	a	Explain the Quantum Mechanical modifications to the classical free electron theory of metals to explain the electrical conductivity in solids and its success.	7	
	b	What is Hall effect and illustrate on the determination of the type of charge carriers in semiconductors.	8	
	c	An elemental solid dielectric material has polarizability $7 \times 10^{-40} \mathrm{Fm}^{-2}$. Assuming the internal field to be Lorentz, calculate the dielectric constant for the material if the material has 3×10^{28} atoms $/ \mathrm{m}^{3}$.	5	
OR				
Q. 08	a	Deduce the expression for electrical conductivity of a conductor using the quantum free electron theory of metals.	8	
	b	Describe in brief the various types of polarization mechanisms.	7	
	c	Calculate the probability that an energy level at 0.2 eV below Fermi level is occupied at temperature 500 K .	5	
Module-5				
Q. 09	a	Define nano-material and classify the nano-materials based on the dimensional constraints.	5	
	b	Describe the construction and working of Scanning Electron Microscope with the help of a neat diagram.	10	
	c	X-rays are diffracted in the first order from a crystal with d spacing $2.8 \times 10^{-10} \mathrm{~m}$ at a glancing angle 60°. Calculate the wavelength of X-rays.	5	
OR				
Q. 10	a	Mention the principle and applications of X-ray photoelectron spectroscope.	5	
	b	Illustrate the working of Transmission Electron Microscope.	10	
	c	Determine the crystallite size given the Wavelength of X-Rays 10 nm , the Peak Width 0.5° and peak position 25° for a cubic crystal given $\mathrm{K}=0.94$.	5	

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome				
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome
Q. 1	(a)	L2	1	1,2,12
	(b)	L2	1	1,2,12
	(c)	L3	1	1,2
Q. 2	(a)	L3	1	1,2,12
	(b)	L1	1	1,2
	(c)	L3	1	1,2
Q. 3	(a)	L1	2	1,2,12
	(b)	L3	2	1,2,12
	(c)	L3	2	1,2
Q. 4	(a)	L3	2	1,2,12
	(b)	L2	2	1,2,12
	(c)	L3	2	1,2
Q. 5	(a)	L4	3	1,2
	(b)	L2	3	1,2
	(c)	L3	3	1,2
Q. 6	(a)	L4	3	1,2
	(b)	L2	3	1,2
	(c)	L3	3	1,2
Q. 7	(a)	L2	4	1,2

Module -1
Q.1) a) Discuss the theory of forced Oscillations and hence 01 classify the conditions of variations. of amplitude and phase with angular frequency.
Sol ${ }^{\prime}$:- consider a body of mass ' m ' Executing vibrations in a damping medium acted upon by an External periodic force $F \sin (p t)$

Where p is the angular frequency of the External force If x is the displacement of the body at any instant of time ' t ' Damping force which acts in a direction opposite to the movement of the body is Equated to the term $-r\left(\frac{d x}{d t}\right)$ where γ is the damping constant. and the restoring force is Equated to the term $-k x$ where k is the force constant. The net fore acting on the body is the resultant of all the three fores

$$
\begin{equation*}
\therefore \text { Resultant fore }=-r \frac{d x}{d t}-k x+\text { Esinpt } \tag{1}
\end{equation*}
$$

The body's motion due to the resultant force obeys Newton's second law of motion on the basis of which we can write.

$$
\begin{array}{ll}
& \text { Resultant force }=m \frac{d^{2} x}{d t^{2}} \rightarrow \text { (2) } \tag{2}\\
\therefore \quad & \text { From } \varepsilon u^{2}(1) \&(2) \\
& \frac{d^{2} x}{d t^{2}}=-r \frac{d x}{d t}-k x+F \sin (p t)
\end{array}
$$

or

$$
m \frac{d^{2} x}{d t^{2}}+x \frac{d x}{d t} \neq k x=F \sin P t
$$

This is the Equy of motion for fond vibration.

02
Dining Throught by m, we get

$$
\begin{aligned}
& \quad \frac{d^{2} x}{d t^{2}}+\frac{r}{m} \frac{d x}{d t}+\frac{k}{m} x=\frac{F}{m} \sin p t \\
& \text { Let } \frac{r}{m}=26
\end{aligned}
$$

The natural frequency of vibration of the body w is given by

$$
\omega=\sqrt{\frac{k}{m}}
$$

Squaring $\omega^{2}=\frac{k}{m}$
Equip (3) can be written as.

$$
\frac{d^{2} x}{d t^{2}}+26 \frac{d x}{d t}+\omega^{2} x=\frac{E}{m} \sin p t
$$

As per the procedures followed to solve differential Equi the above Equip has a solution of the form

$$
\begin{equation*}
x=a \sin (p t-\alpha) \tag{5}
\end{equation*}
$$

where a and α are the unknowns to be found However since $\varepsilon^{\prime 2}(s)$ represents a simple harmonic motion a\& α must represent respectively, the amplitude and phase of the vibrating body.

Differentiating x with resput to ' t ' we get

$$
\frac{d x}{d t}=a p \cos (p t-\alpha)
$$

Differenting again

$$
\frac{d^{2} x}{d t^{2}}=-a p^{2} \sin (p t-\alpha)
$$

Substituting in Equt (4), we get

$$
\begin{array}{r}
-a p^{2} \sin (p t-\alpha)+2 b a p \cos (p t-\alpha)+w^{2} a \sin (p t-\alpha)= \\
=\frac{F}{m} \sin (p t) \rightarrow 8 \tag{03}
\end{array}
$$

The light side of the above Equl can be coritten as

$$
\left.\frac{F}{m} \sin [(p t-\alpha)+\alpha)\right] \quad 1 \because \sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin
$$

Substituting in Equip (8) and simplyting, we get

$$
\begin{aligned}
{\left[-a p^{2} \sin (p t-\alpha)+a \omega^{2} \sin (p t-\alpha)\right.} & +2 \operatorname{bap} \cos (p t-\alpha)]=\frac{F}{m} \sin (p t-\alpha) \cos \alpha \\
& +\left(\frac{F}{m}\right) \cos (p t-\alpha) \cdot \sin \alpha .
\end{aligned}
$$

By Equating the coefficient of $\sin (p t-\alpha)$ from both sides, we ger

$$
\therefore a p^{2}+a 0^{2}=\frac{F}{m} \cos \alpha
$$

Similarly by Equating the coefficients of $\cos (P t-\alpha)$ from both sides weget.

$$
2 \text { bap }=\frac{F}{m} \sin \alpha
$$

Squaring and adding Equi (9) and Equr (iO) we get

$$
\begin{aligned}
& {\left[a\left(\omega^{2}-p^{2}\right)\right]^{2}+(2 b a p)^{2}=\left[\frac{E}{m}\right]\left[\cos ^{2} \alpha+\sin ^{2} \alpha\right]} \\
& a^{2}\left[\left(\omega^{2}-p^{2}\right)^{2}+4 b^{2} p^{2}=[F / m]^{2}\right.
\end{aligned}
$$

$$
\text { or } a=\frac{\left[F_{1 m}\right]}{\sqrt{4 b^{2} p^{2}+\left(\omega^{2}-p^{2}\right)^{2}}}
$$

The above Equit represents the amplitude of the forced vibrations substituting Equ⑺ in Equh(s). The solution of the Equr for forced vibration can be written as

$$
\begin{equation*}
x=\frac{f(m}{\sqrt{4 b^{2} p^{2}+\left(\omega^{2}-p^{2}\right)^{2}}} \sin (p t-\alpha) \tag{12}
\end{equation*}
$$

Phase of forced vibrations:-
Dividing Equit(10) by Equ(a), we get.

$$
\tan \alpha=\frac{262 p}{a\left(\omega^{2}-p^{2}\right)}=\frac{2 b p}{\left(\omega^{2}-p^{2}\right)}
$$

\therefore The phase α of the forced vibration is given by

$$
\begin{equation*}
\alpha=\tan ^{-1}\left[\frac{2 b P}{0^{2}-p^{2}}\right] \tag{13}
\end{equation*}
$$

1 b) IUustate the generation of shock wares using fReddy shock tube Diagram of Ready's tube:-

working: -
The drivergas is compressed by pushing the piston hard into the driver tube untill the diaphragm rupritures.

* Following the rupture, the driver gas noshes into the driven section and pushes the driven gas towards the far down stream end. This generates a moving shock wave that traverses the length of the driven section.
* The shock wave instantaneously raises the temperature \& pressure of the driven (test) gas as the shock moves over it.
* The propagating primary shockwave is reflected from the downstream end. After the reflection. The test gas undergoes further compression which boosts its temperature and pressure to still higher values of pressure and temperature. is sustained at the downstream. end untill an Expansion wave reflected from the upstream end of the drives tube arrives there and neutralises the compression partially.
* Expansion waves are created at the instant the diaphragm is ruptured and they travel in a direction opposite to that of the shock wave.
* The period over which the Extreme temperateus and pressure conditions at the downstream end. is sustained is typically in the order of milliseconds.
* However the actual duration depends on the properties of the driver and test gases and the dimensions of the shock tube
C) Given the damping constant of the medium $0.1 \mathrm{kgs}^{-1}$ calculate the amplitude of the oscillations at resonance given the mass attached to the spring-mass oscillator $50 \times 10^{-3} \mathrm{~kg}$, the amplitude of the applied periodic force $1 N$ and the period of oscillations 1 second.
Sol':- Given $b=\frac{r}{2 m}=0.1 \mathrm{kgs}^{-1}, \quad$ mass $=50 \times 10^{-3} \mathrm{~kg}$. force $(F)=1 \mathrm{~N}$

$$
\begin{aligned}
P=2 \pi f=2 \pi \frac{1}{r} & a=\frac{F / m}{26 p}=\frac{1 / 50 \times 10^{-3}}{2 \times 0.1 \times 2 \times 3.142}=\frac{20}{1.2568} \\
P=2 \pi & \\
&
\end{aligned}
$$

Q. 06
Q.2) a) Applying Hooke's law arrive at the Equations for the effective spring constant of Series and parallel combinations of springs
Sol ta:-

Consider two idealized springs $S_{1} \& \cdot s_{2}$ with spring constants K_{1} and k_{2} respectively. x_{1} be the Extension (within Elastic limit) in S, when a mass m is attached at its cower end.

Following Honkie's law we hare $F=-k_{1} x_{1}$
But $f=m g$. Hence $m g=-k_{1} x_{1}$
Qu ' $\lambda_{1}=\frac{-m g}{k_{1}}$
Similarly let x_{2} be the Extension (within clastic limit) in δ_{2} when the same mass m is attached to it. In similarly to Equh(1), we can write

$$
\begin{equation*}
x_{2}=\frac{-m g}{k_{2}} \tag{2}
\end{equation*}
$$

Now Let $S_{1} \& S_{2}$ be the suspended in series as shown in fig 3. Let the load m be suspended now at the bottom 087 this series combination.
Since each of the springs $S_{1} \& s_{2}$ experience the same pull by the mass m, s_{1} extends by $x_{1} \& s_{2}$ extends by x_{2} Thus the mass m comes down showing a total-extension

$$
x=x_{1}+x_{2}
$$

Let the force constant for this series combination as a whole be Ks
\therefore we can write.

$$
\begin{align*}
& m g=-k_{s} x=-k_{3}\left(x_{1}+x_{2}\right) \\
& x_{1}+x_{2}=-\frac{m g}{k_{S}} \rightarrow \tag{3}
\end{align*}
$$

using Equr (1) w (2), Equal (3) can be written as

$$
\frac{-m g}{k_{1}}-\frac{m g}{k_{2}}=-\frac{m g}{k_{g}}
$$

Removing the common factor $-m g$ and rearranging, we have

$$
\begin{aligned}
& \frac{1}{k_{s}}=\frac{1}{k_{2}}+\frac{1}{k_{2}} \\
& k_{s}=\frac{k_{1} k_{2}}{k_{2}+k_{2}}
\end{aligned}
$$

If there are n no. of springs in series then

$$
\frac{1}{k_{s}}=\sum_{i=1}^{n} \frac{1}{k_{i}}
$$

If a mars is attcuhed to the bottom of such a series Combination of springs \&s set for oscillations, its period of oscillation will be

$$
T=2 \pi \sqrt{\frac{m}{k_{s}}}
$$

Equivalent force constant for springs in parallel Combination

Consider two idealized springs $S_{1} \& S_{2}$ with Spring constants $k_{1} \& k_{2}$ respectively. Let $x_{1} \& x_{2}$ be the respective extensions that the springs $s_{1} \& s_{2}$ would undergo individually, under the pulling action of a suspended mass m. Hence we have

$$
\begin{align*}
& m g=-k_{1} x_{1} \quad \text { or } \quad x_{1}=-\frac{m g}{k_{1}} \tag{1}\\
& m g=-k_{2} x_{2} \text { or } \quad x_{2}=-\frac{m g}{k_{2}} \tag{2}
\end{align*}
$$

Let the restoring force acting on the support be F_{p} and the force constant for this combination be kp.

$$
\begin{equation*}
\therefore \quad E_{p} p=-k_{p} x \tag{3}
\end{equation*}
$$

The restoring force F_{p} is actually shared by the two Springs. Let the restoring fore in s_{1} be F_{1} \& that in s_{2} be F_{2}.

$$
F_{p}=F_{1}+F_{2}=-k_{1} x_{1}-k_{2} x_{2}
$$

But, since both springs undergo same extension $x, x_{1}=x_{2}=x$

$$
\begin{align*}
& f_{p}=-k_{1} x-k_{2} x \\
& f_{p}=-\left(k_{1}+k_{2}\right) x \tag{4}
\end{align*}
$$

Comparing Equal (1) \& (2), we have

$$
k_{p}=k_{1}+k_{2}
$$

K_{p} is the Equivalent force constant for the parallel Combination. If there are n no. of springs connected in parallel then

$$
k_{p}=k_{1}+k_{2} t \cdots+k_{D}
$$

For this combination of mass-springsystem, the period of oscillation will be.

$$
T=2 \pi \sqrt{\frac{m}{k p}}
$$

Q2) bf Enumerate the properties and applications of shock waves.
Sol":- They always travel in the medium with machoumber Exceeding 1 .
(2) Shock wares obey the laws of fluid dynamics
(3) The effects caused by shockwanes result in increase of entropy.
(14) Across the shock ware. Supersonic flow is deaccelerated. into subsonic flow. This process occurs adiabatically but with a change in internal energy.
(B) They are produred in very thin spare of thickness not Exceeding 1 um so when the medium is subjected to an increase in pressure, temperature \& density.
(6) They are not actually ware-like conventional sense. However shock wave energy has similar physics as sound wanes.
(7) On Impact, they physically travel through any medium (even in said medium) through the energy is dissipated fast. Application of shock waves
(1) Cell in form action
(6) shock waves assisted needless
(2) wood preservation drug delivery
(3) Use in pencil Industry
(7) Treatment of dry borewells.
(4) Kidney stone treatment.
(5) Gas dynamics Studies

Q 21 cs Compare the mach number of a jet fighter travelling. with $2000 \mathrm{~km} \mathrm{~h}^{-1}$ with that of a bullet travelling with a velocity of $400 \mathrm{~ms}^{-1}$ in the Same medium given the speed of sound in the medium $330 \mathrm{~ms}^{-1}$

Q 3) as Discuss the spectral distribution energy in the black body radiation spectrum and hence Explain Wien's displacement Law.
SolUs:-

The curves in the figure represent the variation of Intensity of the radiation with wavelength for different temp's of the black $\operatorname{body}\left(T_{1}<T_{2}<T_{3}<T_{4}\right)$
(1) At a given temperature of the black body emits continuous range of wavelengths.
(2) Energy at a definite wavelength increases coith in crease in temperature of the blackbody.
(3) The energy distribution is not uniform. There is a particular wavelength λ_{m} at which the energy emitted is maximum
(4) The wavelength λ_{m} at while maximum emission of energy. takes place, decreases with increase in temp
(5) The area under the curve Represents the total energy emitted and is proportional to the fourth power of the absolute temp.

कroprul propiol Fibma $\leftarrow\urcorner \exists$

$$
\frac{\left.7 \text { suan } s_{s} \perp \omega_{1}\right]}{\left.s^{\perp} \text { fsum }=w_{7}\right]}
$$

dura romosgo forand arsty rut of
 cuy frosca umunoou on foul proms uron smant

$$
\begin{gathered}
\therefore \text { am fuanmosmp s, oran } \\
\text { pryan }
\end{gathered}
$$

 qubrgamom
 - spuodsobros arrong out ramon af Mery rout to propes absis ont at privers 8 yord un at Eimpuadrateon affurparom som \& arrocn. Wio rul fout.

 \therefore irrmpory Eusmon af prou fond rus ZI

Weir's (aw
Wein also deduced the relation between the wavelength of emission and the temp of the source as

$$
E_{\lambda} d \lambda=c_{1} \lambda^{-S} e^{-\left(c_{2} / \lambda \tau\right)} d \lambda
$$

Where $E_{\lambda} d \lambda \rightarrow$ is the energy emitted /unit volume for wavelength in the range λ and $\lambda+d \lambda$

$$
C_{1} \& C_{2} \rightarrow \text { are constant }
$$

This law is called Weir's law of energy distribution in the black body radiation spectrum.

Q 3 br State and Explain Heisenberg uncertainity principle and infer on the classical \& mechanical "̈smeasurments.

Sol:- Statement:- It is impossible to determine both the exact position and Exact momentum of a particle at the sametime The product of uncestainity in these quantities is always greater than or Equal to $\frac{h}{4 \pi}$
as

b)

Mathematically The uncertainity principle in x-direction.

$$
\Delta x \Delta P_{x} \geqslant \frac{h}{4 \pi}
$$

14 The uncertainity principle in y and z-direction. can be writer as

$$
\begin{aligned}
& \Delta y \Delta p_{y} \geqslant \frac{h}{4 \pi} \\
& \Delta z \Delta p_{z} \geqslant \frac{b}{4 \pi}
\end{aligned}
$$

Inter on the classical \& Mechanical Theasuments:-
(1) Non-Existence of electron in the nucleus.

If an electron is confined to the nucleus whilo has a radius of the order $10^{-14} \mathrm{~m}$. The maximum uncertainity in position of the electron will be of the order of the radius

$$
(\Delta x)_{\max }=10^{-14} \mathrm{~m} .
$$

By Heisenberg uncertainity principle.

$$
\begin{aligned}
(\Delta x)_{\text {max }}(\Delta P)_{\text {min }} & =\frac{h}{4 \pi} \\
(\Delta P)_{\text {min }} & =\frac{h}{4 \pi(\Delta x)_{\text {max }}} \\
& =\frac{6.63 \times 10^{34}}{4 \pi \times 10^{-14}} \\
(\Delta P)_{\text {min }} & =5.276 \times 10^{-21} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The momentum of elution has to be atleast comparable in magnitude to this uncertainity.

$$
\therefore P_{\text {min }} M(\Delta P)_{\text {min }}=5.276 \times 10^{-21} \mathrm{~kg} \mathrm{~m} / \mathrm{s} .
$$

The equation for energy from theory of relativity is

$$
E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}
$$

Here $m_{0}^{2} c^{4} \ll P^{2} c^{2}$

$$
\begin{gathered}
E=P C \\
E_{\min }=5.276 \times 10^{-21} \times 3 \times 10^{8}=1.583 \times 180^{-12} \mathrm{~J}=q_{2} 9 \mathrm{MeV}
\end{gathered}
$$

2) minimum Kinetic energy of an electron in an atom.
consider an electron in a hydrogen atom of radius $3.3 \times 10^{-11} \mathrm{~m}$

$$
\Delta x=5.3 \times 10^{-11} \mathrm{~m}
$$

using uncertainity principle.

$$
\begin{aligned}
& \Delta p \geqslant \frac{h}{4 \pi \Delta x} \Rightarrow \Delta p \geqslant \frac{6.63 \times 10^{-34}}{4 \times \pi \times 5.3 \times 10^{-11}} \\
& \Delta p \geqslant 9.955 \times 10^{-25} \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

The momentum of electron must be attest of the same order as $\triangle P$

$$
P \geqslant 9.955 \times 10^{-25} \mathrm{kgmls}
$$

The kinetic energy will be

$$
\begin{aligned}
& k \geqslant \frac{p^{2}}{2 m} \geqslant \frac{\left(9.955 \times 10^{-25}\right)^{2}}{2 \times 9.4 \times 10^{-11} \times 1.6 \times 10^{-19}} \\
& k \geqslant 3.4 \mathrm{eV}
\end{aligned}
$$

c) The kinetic energy of an electron is Equal to the energy of a photon with a wavelength of 560 nm . Calculate the de Broglie wavelength of the electron.
Sol":- Energy of photon is given by

$$
\begin{aligned}
E_{p}=\frac{b c}{\lambda_{p}} & =\frac{6.623 \times 10^{-34} \times 3 \times 10^{8}}{560 \times 10^{-9}} \\
E_{p} & =\frac{0.0354 \times 10^{-17} \mathrm{~J}}{1.6 \times 10^{-19}} \\
E_{p}=\quad & 0.021 \times 10^{2} \mathrm{eV} \\
E_{p} & =2.18 \mathrm{eV}
\end{aligned}
$$

16 The wavelength λ_{e}^{\prime} of an electron interns of its kinetic energy ' E ' is given by

$$
\begin{aligned}
\lambda_{e} & =\frac{h}{\sqrt{2 m e E_{p}}} \\
& =\frac{6.623 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 2.18}} \\
& =\frac{6.623 \times 10^{-34}}{1.997 \times 10^{-15}} \\
\lambda_{e} & =3.32 \times 10^{-19} \mathrm{~m}
\end{aligned}
$$

Q4a) Discuss the motion of a quantum particle in one-dimensional potential well of the infinite height and of width a and also Examine the quantization of energy.
Solus

Consider a one dimensional problem in which a particle of mass m moving with speed ' v ' along x-axis is confined ${ }^{17}$ to box of length a with perfutly rigid walls at $x=0$ and $x=a$ as shown in $i g$

The particle does not lose energy when it collides with the walls so that its total energy remains constant This physical problem of a particle confined between two rigid walls can be converted into a problem of potential distribution by specifying the potential energy of the particle to be infinite at and beyond the calls i-l

$$
v=\infty \text { for } x \leqslant 0 \text { and } x \geqslant a
$$

The potential enerery of the particle is constant within the box which can be taken to be zero for convenience i.e

$$
v=0 \text { for } 0<x<L
$$

The potential energy distribution is shown in fig (6) It is as if the particle is inside an infinite potential well as the particle does oo Exist at the walls and beyond them $\psi=0$ for $x \leqslant 0$ and $\lambda \geqslant a$
The ware function ψ Exists only for $0<x<a$ Schrodinger's time independent ware Eq" - is

$$
\begin{equation*}
\frac{d^{2} \psi}{d \lambda^{2}}+\frac{8 \pi^{2} m^{\prime}}{b^{2}}(E-v) \psi=0 \tag{1}
\end{equation*}
$$

Substituting $r=0$ for $0<x<a$ in Equir (1)

$$
\frac{d^{2} p p}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}} E P=0
$$

$n \neq 0$ as $n=0 \Rightarrow \varphi=0$ for all values of x with is not possible

$$
K=\frac{D \pi}{a}
$$

From Equal (2) $s(5)$

$$
\frac{8 \pi^{2} m E}{b^{2}}=\frac{n^{2} \pi^{2}}{a^{2}}
$$

$A s$ energy ' E ' depends on ' D ' we use suffix ' D ' fo E '

$$
E_{0}=\frac{n^{2} b^{2}}{8 m a^{2}}
$$

where $n=1,2,3, \ldots$
from the above Equt the smallest value of energy that the particle can have is

$$
E_{1}=\frac{b^{2}}{8 m a^{2}}
$$

Which is non-zero This contridicts classical Mechanics al to which the particle can have zero energy.
The other possible values of energy are

$$
\hat{x}_{2}=\frac{4 b^{2}}{8 m a^{2}}, \quad E_{3}=\frac{9 b^{2}}{8 m a^{2}} \text { etc }
$$

These energy values are discreate. They are not continuous as Expected from classical mechanics.

Thus of c to quantum mechanics the particle inside a rigid box cannot have all values of energy but only those discreate, energy values are known as energy Eigen values

ware function substituting $\varepsilon_{q u i}(6)$ in $\varepsilon_{q} \operatorname{lin}^{\prime 2}(5)$ we get

$$
\psi=A \sin \left(\frac{n \pi x}{a}\right)
$$

The complex conjingate of ψ is

$$
\psi^{*}=A \sin \left(\frac{n \pi x}{a}\right)
$$

To normalize the wavefunction we find $\int_{0}^{a} P^{\prime} Q^{x} d x$

$$
\begin{aligned}
\int_{0}^{a} \psi \psi^{*} d x & =\int_{0}^{a} A^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x \\
& =A^{2} \int_{0}^{a} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x \\
& =A^{2} \int_{0}^{a}\left[\frac{1-\cos \left(\frac{n \pi x}{a}\right)}{2}\right]^{2} d x \\
& =\frac{A^{2}}{2}\left[x-\frac{\sin \frac{n \pi x}{a}}{\frac{n \pi}{a}}\right]_{0}^{L} \\
& =\frac{A^{2}}{2}[a-0] \\
\therefore \quad \int_{0}^{a} \varphi \psi^{x} d x & =\frac{A^{2} a}{2}
\end{aligned}
$$

Let the RHS be N^{2} i. e^{2}

$$
\begin{aligned}
& \text { RHS be } N \text { i.e } \\
& N^{2}=\frac{A^{2} a}{2} \quad N=A \sqrt{\frac{a}{2}}
\end{aligned}
$$

The normalized wave function ψ_{n} is obtained using

$$
\varphi_{N}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)^{\frac{n}{2}}
$$

These normalized wave function are called Eigenfunction

$$
\psi_{n}^{*}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

The probability function is

$$
p(x)=\left|\varphi_{n}\right|^{2}=\varphi \varphi_{0}^{*}=\frac{2}{a} \sin ^{2}\left(\frac{n \pi x}{a}\right)
$$

The wave function and probability functions for $D=1,2,3$. are shown in below fig

A particle having the lowest energy E, has cove function 4 , for which the probability of finding the particle is movinum. at the Centre of the box.
(6) Deduce Rayleigh-Jean law from planck's Law of Radiation.

Sol's. For longer wavelengths

$$
r=\frac{c}{\lambda} \text { is small } \lambda \uparrow \quad r \downarrow
$$

Since r is small, $\frac{h^{n}}{k^{T}}$ will be very small.
Expanding $e^{\frac{h^{n}}{k T}}$ as power series, we have

$$
\begin{aligned}
& e^{\frac{h r}{k T}}=1+\frac{h r}{k T}+\left(\frac{h r}{k T}\right)^{2}+\cdots \\
& e^{\frac{h n}{k T}}=1+\frac{h n}{k T} \quad \because V \text { is very small. }
\end{aligned}
$$

[since $\frac{h n}{K_{T}}$ is nev small, its higher power terms could be negluted]

$$
\left(e^{h / k T}-1\right)=\frac{h n}{k T}=\frac{h c}{\lambda K T} \quad\left(V=\frac{c}{\lambda}\right.
$$

Substituting in Equ2 (1)

$$
E_{\lambda} d \lambda=\left[\frac{8 \pi h c}{\lambda^{s}\left(\frac{h c}{\lambda k \tau}\right)}\right] d \lambda
$$

$E \lambda d \lambda=\frac{8 \pi K T}{\lambda^{4}} d \lambda$ This Eq is is Rayliegh-Jeans
Thus wain's (aw \& Rayleigh Jeans law come out a special cases showing the general form of planck's Law of radiation.

Lc) The speed of electron is measured to within an uncertainity3 $2 \times 10^{4} \mathrm{~ms}^{-1}$ in one dimension. What is the noarinouo minimum width required by the electron to be confined in an atom.

Sol':- By Heisenberg's uncertainity principle,

$$
\begin{gathered}
\Delta x \Delta p \geqslant \frac{h}{4 \pi} \\
p=m v \\
\Delta p=m \Delta v \\
\Delta x \geqslant \frac{h}{4 \pi m \Delta v} \\
h=6.63 \times 10^{-34} \mathrm{Js} \\
m=9.1 \times 10^{-31} \mathrm{~kg} \\
\Delta v=2 \times 10^{4} \mathrm{~ms}^{-1} \\
\Delta x=\frac{6.63 \times 10^{-34}}{4 \pi \times 9.1 \times 10^{-31} \times 2 \times 10^{4}}=\frac{6.63}{228.73} \\
\Delta x=0.028 \times 10^{-7} \mathrm{~m} \\
\Delta x=2.8 \times 10^{-9} \mathrm{~m}=0.28 \times 10^{-10} \mathrm{~m} \\
\Delta x=0.28 A^{\circ} \mathrm{m}
\end{gathered}
$$

Module 3
btl ar (iscuess the motion of quantum -particle in one-dimensiond
5(a) Obtain the Expression for energy density using Einstein's A and B coefficients and hence draw inter bn the Relation $B_{12}=B_{21}$
Sol":- Consider a system of atoms having a ground state energy E_{1} and Excited state energy E_{2} with number densities of atoms in these states N_{1} and N_{2} respectively. It a photons of frequency is given by

$$
\begin{equation*}
n=\frac{E_{2}-E_{1}}{h} \tag{1}
\end{equation*}
$$

The rate of absorption of photons will be proportional to the numberdensity N_{1} of the atoms in ground state. and the energy density E_{n} in the frequency range r to $r+d r$ incident radiation.
\therefore Rate of absorption $\alpha N_{1} E_{r}$
\therefore Rate of absorption $=B_{12} N_{1} E_{r}$
Where B_{12} is a constant known as Einstein's coefficient of induced absorption.
Atoms in a Excited state E_{2} can came down to ground State through spontaneous emission In this case emission does not depend on the energy densify, in the incident radiation

So Rate of Spontaneous emission $\propto N_{2}$
\therefore Rato of Spontaneous emission $\approx A_{21} N_{2} \rightarrow(3)$

Where A_{21} is a constant known as Einsteins's coefficient of Spontaneous emission.
In case of Stimulated Emission a photon of frequency is required to stimulate the atoms

So
Rate of Stimulated emission $\propto N_{2} E_{r}$
Rate of stimulated emission $=B_{27} N_{2} E_{r}$
where B_{21} is a constant known as Einstein's covefficient of Stimulated emission

In a state of thermall Equilibrium, the rate of transition of atoms from E_{1} to E_{2} must Equal the total rate of transition from E_{2} to E_{1}
\therefore Rate of absorption $=$ Rate offpontanens emission t Rate of stimulated emission

$$
\begin{equation*}
\therefore B_{12} N_{1} E_{r}=A_{21} N_{2}+B_{21} N_{2} E_{r} \tag{5}
\end{equation*}
$$

Dividing by N_{1} we get.

$$
\begin{aligned}
& B_{12} E_{r}=A_{21} \frac{N_{2}}{N_{1}}+B_{21} \frac{N_{2}}{N_{t}} E_{r} \\
& E_{r}\left[B_{12}-B_{21} \frac{N_{2}}{N_{1}}\right]=A_{21} \frac{N_{2}}{N_{1}} \\
& E_{r}=\frac{A_{21}\left[\frac{N_{2}}{N_{1}}\right]}{\left[B_{12}-B_{21}\left[\frac{N_{2}}{N_{t}}\right]\right.} \\
& E_{r}=\frac{A_{21}\left[\frac{N_{2}}{N_{1}}\right]}{B_{12}-B_{21}\left[\frac{N_{2}}{N_{1}}\right]}
\end{aligned}
$$

$$
\begin{aligned}
26 E_{r}= & A_{21}\left[\frac{N /}{N_{1}}\right] \\
& {\left[\frac{N / 2}{N_{1}}\right]\left[B_{12}\left[\frac{N_{1}}{N_{2}}\right]-B_{21}\right] } \\
E_{r}= & \frac{A_{21}}{\left[B_{12}\left[\frac{N_{1}}{N_{2}}\right]-B_{21}\right]}
\end{aligned}
$$

Taking B_{21} take it as common

$$
\begin{aligned}
& E_{r}=\frac{A_{21}}{B_{21}\left[\frac{B_{12}}{B_{21}}\left[\frac{N_{1}}{N_{2}}\right]-1\right]} \\
& E_{r}=\left[\frac { A _ { 2 1 } } { B _ { 2 1 } } \left[\frac{1}{\left.\left[\frac{B_{21}}{B_{21}}\right] \frac{N_{1}}{N_{2}}-1\right]}\right.\right.
\end{aligned}
$$

marwell-Boltzman distribution

$$
\begin{gather*}
\text { marwell-Boltzman distribution } \\
\frac{N_{2}}{N_{1}}=e^{\left.-\frac{\left[E_{2}-E_{1}\right]}{k T}\right]}=e^{-\frac{h r}{k T}} \\
\therefore \frac{N_{1}}{N_{2}}=e^{\frac{h r}{k T}} \rightarrow(6) \tag{7}\\
E_{r}=\frac{A_{21}}{B_{21}}\left[\frac{1}{\frac{B_{12}}{B_{21}} e^{h r / k \sigma}-1}\right] \rightarrow(7)
\end{gather*}
$$

Comparing with the energy density from planck law

$$
E_{n}=\frac{8 \pi n r^{3}}{c^{3}}\left[\frac{1}{e^{h r} / k r-1}\right]
$$

we get

$$
\begin{aligned}
& \text { we get } \frac{B_{12}}{B_{21}}=1 \\
& \therefore B_{12}=B_{21}
\end{aligned}
$$

and

$$
\frac{A_{21}}{A_{21}}=\frac{8 \pi h n^{3}}{c^{3}}
$$

from the above Equ't we can write

$$
\frac{A_{21}}{B_{21}} \propto r^{3}
$$

Discussion:-
For large $r \cdot A_{21} \gg B_{21}$ as $r=\frac{E_{2}-E_{1}}{h}$ for large Energy difference between the ground state and Existed state.
The probability of spontaneous emission is much larger that) the probability of stimulated emission.

* It means that to build lasers in the ultraviolet x-ray legion would be much more difficult than to build lasers in visible or Infrared regions.
I The process of Stimulated emission becomes Significant at lower frequencies

5
b) ${ }^{28}$ Discuss the attenuation and various losses in optical fibers.

Son:- The loss of light energy of the optical signal as it propagates through the fiber is called athermation

The main reason for the loss of light intensity over the length of the cable is due to (1) hight absanption
(2) scattering
(3) Radiation loses.
(1) Light Absorptions- The absorption in the fiber glass occurs due to the presence of impurities like copper, Chromium iron etc.

* During the light propagation the electrons of the imprsity atoms absorbs the photons and get exited to higher energy level.
*After a fraction of time they comes back to ground stats. with the emission of photons.
* But the emitted photons will have different wavelength or different phase w.r.t light signal.
* Therefore they fail to undergo total internal reflection
* Even if the material has no impurities the material it self may absorb some light energy. This is called intrinsic absorption.
(2) Scattering cosses 5- Since the glass is a beterogeneous mixture of many oxides like SiOn, Pros, etc The composition of the molecular distribution varies from point to point Hence due to the nomogencity in the material these will be Sharp variation in refractive index value inside the glass over distances
* when light travels in the fiber. The photons may be scattered This type of Scattering is similar to Rayliegh scattering.
* Rayleigh scattering occurs when the dimensions of the object are smaller than the wavelength of the light Rayliegh Scattering is inversly proportional to the $4^{\text {th }}$ power of wavelength.
* Due to Rayleigh scattering photons moves in random direction and fails to under go TIR and (leaves) escapes from the fiber through cladding it becomes a loss.
* The scattering losses can be minimized by the use of light waves of conger wavelength.

3) Radiation losses :-

Radiation losses occurs due to bending of fiber when the optical fiber is cured Extensively such that incidurce angle of the light ray falls below the critical single then no total intemal reflation takes place and some of the light rays creaks through the cladding and leads to coss in the intensity of light

The net attenuation can be determined by a factor called alternation coveficient (α) Expressed in $d B \mid \mathrm{km}$ that is

$$
\alpha=-\frac{10}{L} \log _{10}\left[\frac{P_{\text {out }}}{P_{i n}}\right]
$$

where pout is the power output and $P_{i n}$ is the power coupled into the fiber. L is the length of the fiber.

Q 5$) ~ c>0$ calculate the number of photons emitted per pulse of duration 1 microsecond given the power out of laser 3 mw and wavelength of laser 632.8 nm
Sol":-

$$
\begin{aligned}
E & =\frac{N h c}{\lambda}=p x t \\
N & =\frac{p t \lambda}{h c} \\
P=3 m W & =3 \times 10^{-3} \mathrm{~W}, t=1 \times 10^{-6} \mathrm{~s} . \quad \lambda=632.8 \times 10^{-9} \mathrm{~m} \\
N & =\frac{3 \times 10^{-3} \times 10^{-6} \times 632.8 \times 10^{-9}}{6.624 \times 10^{-34} \times 3 \times 10^{8}} \\
N & =\frac{1898.4}{19.872} \times 10^{-18} \times 10^{+26} \\
N & =95.53 \times 10^{8}
\end{aligned}
$$

Q6\} a \ $~ D e f i n e ~ m o d e s ~ o f ~ p r o p a g a t i o n ~ a n d ~ R I ~ P a n t i l e ~ a n d ~ D i s t i n g u i s h ~ }$ between the types of optical fibers.
Sol:- When light is transmitted through optic fibre cores of diameter in the range $50 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$; it can travel along different ray paths known as modes of propagation. A ray travelling along the axis is known as axial mode. and the higher order modes are the rays travelling at smaller angles of incidence on the Core-cladding interface.

The distance travelled by the axial mode is smaller Than the higher order modes due to which the different modes reach the other end of the fibre at different times.

The number of modes that can travel in a fibre is determined from V-number which is given by

$$
V=\frac{\pi d}{\lambda} \times N A .
$$

Where λ is the wavelength of light used and d is the diameter of core of the optic fibre.

The number of modes $=\frac{v^{2}}{2}$
\therefore The number of modes $N=\frac{\pi^{2} d^{2}}{2 \lambda^{2}} \times(X \cdot A)^{2}$

32 Optical fibre types
(1) Step index fibres:-

Such fibres have a core of homogeneous transparent material of refractive index n and Cladding of another homogeneous transparen material of refractive index $n_{2}\left(<n_{1}\right)$ There is an abrupt change in refractive indexat the core-cladding interface due to which they are known as step index fibres.

If the core diameter of the step index fibre is of the order of $50 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$ it can transmit a large number of modes as shown in fig the cladding thickness is typically 20 to 25 Hm . There fibres are known as multimiode step in tex fibres. These fibres are cheaper compared to other fibres but not suitable for long distance

* Step index fibres which have core diameters in the range of $2 \mu \mathrm{~m}$ to 10 mm are known as single mode stepindex fibres.
* These fibres essentially transmit only the axial mode due to very small core diameter
* The Thickness of the core is typically $25 \mu \mathrm{~mm}$ to $30 \mathrm{\mu m}$ These fibres are used for long distance communication as intermodal dispersion is eliminated.

 prosalc!u parmizs hmoupud son ratt ou bo pur ruo * Inddus uacod 0 al prraucion
 arsormat to we.40ndtho ropmupod ution froon sas06 bo costredaed pro aunsraed, ohes ponpos mL wot LI-9. n. agrt spisul sensraed M1. x

Eirif ouple onf v?

chforo mpar sea pro maumop wssir to
agry rhropentp o to sasisues earoy $\tau_{\text {as }}$ posith \forall

$$
\therefore \text { anopngsum earoy } \mathrm{r}_{02}
$$

- pocu burpura
yoom fumprosers Jrprocucuht (2)

pros rapys porce of dry mu urion burylem puno curamersuon

Working：－The high voltage across the electrodes Excited the gas molecule．The nitrogen molecules in the gas are Excited to higher levels．and transfer energy to CO_{2} molecules by first kind collision like that many of the CO_{2} molecules wi U ＇also be raised to their 001 energy state（coliuh is not metastable State）For N_{2} molecules this process can be represented as

$$
e_{1}+N_{2}=e_{2}+N_{2}^{*}
$$

Here $e_{1} \& l_{2}$ are the energy values of the electrons before
\＆After collisions respectively
$N_{2} \& X_{2}^{*}$ are the energy values of the λ_{2} molecules in the ground State $V=1$ state respectively．
The CO_{2} molecules are Exited to the metastable state E_{5} Where population inversion takes place w．r．t the two lower lasing levels $E_{3} \& E_{4}$

Ir this state second．Collision takes plare whit Can be represented as

$$
\mathrm{N}_{2}^{*}+\mathrm{CO}_{2}=\mathrm{N}_{2}+\mathrm{CO}_{2}^{*}
$$

Where $\mathrm{CO}_{2} \& \mathrm{CO}_{2}$ 有 refer to the energies of CO_{2} molecules in the ground and Excited state respectively

36
\& In the CO_{2} laser. transition E_{3} level to E_{4} level which gives rise to radiation of wavelength 10.6 km which is in the for infrared region.

* Transistion from E_{S} level to E_{3} level whirl gives rise to. radiation of wavelength 9.6 Mm which is also in the far in traced region.
* The procedure is repeated again and again we get polarised beam on the suit side of the CO_{2} laser.
Energy level chagram of CO_{2} (aser)-

Q 6) C) Compare the acceptance angle of an optical fiber placed in air and water given the RI of water 1.33 and RI of core 5.37 clad $1.5 \$ 1.45$ Respectively.
Sol": Given

$$
\begin{aligned}
& \text { Given } \\
& n_{a_{i r}}=1 \quad n_{\text {water }}=1.33 \quad n_{\text {core }}=1.5 \quad n_{\text {clad }}=1.45 \\
& \frac{\sin \theta_{\text {air }}}{\sin \theta_{\text {water }}}=\frac{n_{\text {water }}}{n_{\text {air }}} \\
& \frac{\sqrt{n_{1}^{2}-n_{2}^{2}}}{n_{\text {air }}}=\frac{n_{\text {water }}}{n_{\text {air }}^{2}-n_{2}^{2}} \\
& \frac{n_{\text {water }}}{\frac{\sqrt{(1.5)^{2}-(1.45)^{2}}}{1}}=\frac{1.33}{1} \Rightarrow \frac{0.05}{\frac{1}{1}} \\
& \frac{(0.05}{1.33} \\
& \frac{\sqrt{(1.5)^{2}-(1.45)^{2}}}{\frac{n_{\text {water }}}{n_{\text {air }}}}=1.33
\end{aligned}
$$

Q. T) as Explain the Quantum mechanical modifications to the Classical free electron theory of metals to Explain the electrical conductivity in solids and its success.

Sol 1.: - (9) The energy of free electrons are quantized
(2) Free electrons obey pauli's Exclusion principle.
(3) The distribution of tree elutions in energy levels is governed by Fermi-dirac statistics.
(4.) Free alutrons move in uniform potential field due to conic cores in a metal.
(5) The electrostatic alutron-ion attractions and electron-eletron repulsions are negligible.
Expression for conductivity using Quantum free elution Theory:
The energy of free electron can be written in terms of momentum ' P ' is

$$
E=\frac{p^{2}}{2 m} \rightarrow \text { (1) } \quad\left(\because p^{2}=2 m E\right)
$$

using de-Broglie wavelength ' λ '

$$
p=\frac{b}{\lambda}=\left(\because \lambda=\frac{b}{p}\right)
$$

Equ' (1) becomes

$$
E=\frac{(h / \lambda)^{2}}{2 m \lambda^{2}}
$$

E can be Expressed in terms of wavenumber k

$$
\lambda=\frac{2 \pi}{k}
$$

\therefore using the value of λ, eq (2) becomes

$$
\begin{align*}
& E_{k}=\frac{b^{2}}{2 m\left(\frac{2 \pi}{k}\right)^{2}} \\
& E_{k}=\frac{b^{2} k^{2}}{8 m \pi^{2}} \tag{3}
\end{align*}
$$

In the ground state of the free electrons, the maximum energy of elutions is the fermi i energy E_{F}
Equ"-(3) can be written for this state is

$$
\begin{equation*}
E_{F}=\frac{b^{2}}{8 \pi^{2} m} k_{F}^{2} \tag{4}
\end{equation*}
$$

We know that, the general Expression for drift velocity V_{d} is

$$
V_{d}=\frac{e E z}{m}
$$

Where $\quad Z \rightarrow$ is the average time elapsed after the collision
\therefore The energy density is

$$
J=n e V_{d} \rightarrow 6 \quad(\because J=I(A)
$$

using Equ' (5) Equip' (6) becomes

$$
\begin{aligned}
J & =n e r d \\
J & =n e\left(\frac{e E z}{m}\right) \\
J & =\frac{n e^{2} E z}{m} \\
\text { Also } J & =\sigma E \\
\sigma E & =\frac{n e^{2} E \tau}{m} \Rightarrow \sigma=\frac{n e^{2} r}{m} \rightarrow(7)
\end{aligned}
$$

40 If λ is the mean treepath \& V_{f} is the speed of free electrons whose Kinetic energy is Equal to Fermi energy Since only electrons near fermi level cont ins con tribute to the conductivity

The average time I between two collision of free electrons with core ions is given by

$$
z=\frac{\lambda}{V_{f}}
$$

\therefore Equ' 7 becomes.

$$
\sigma=\frac{n e^{2}}{m}\left(\frac{\lambda}{v_{f}}\right)
$$

Q 7) bS what is Hall effect and illustrate on the determination of the type of charge carriers in semiconductors.

Sol":- Statement:- "when magnetic field is applied $1^{\text {lar }}$ to the direction of current in a conductor a potenential difference develops along an axis $1^{\text {lar }}$ to both current and magnetic field This effect is known as Hall effect"

Hall effect finds important application in -studying the elution properties of. Serricondutor such as determination of carrier Concentration and carrier mobility It is also used to determine wheather a semiconductor is D type or p-type
Theory:-

consider a rectangular slab of a semiconductor material in while a current I is flowing in the positive x-direction. Let the semiconducting material be of \square-type, which means that the charge carriers are electrons.

Let a magnetic field B be applied along the z-direction under the influence of the magreticfield. The elation Experience a lorentz force F_{L} is given by

$$
f_{L}=-\operatorname{Ber} \rightarrow 0
$$

Where l is the magnitude of charge on the electron
$V \rightarrow$ is the drift velocity
Applying the Flemings left hand Rule. We see that the force is Exerted on the electrons in negative y-direction

* The electrons are therefore defluted downwards as a result The density of the electrons increases in the lower end of the material due to which its bottom edge becomes negatively charged.
* on the other hand the loss of electrons from the upper end Causes the top edge of the material to become positively charged Hence a potential V_{H} called the Hall voltage. appears between upper and lower surfaces of the semi conductor material which establishes an electrical field E_{H}, called the "Hall field" across the conductor in the negative y direction The field E_{H} Exerts upward fore F_{t} on the elutions given by

$$
\begin{equation*}
F_{H}=-e E_{H} \tag{2}
\end{equation*}
$$

By def th of electric field

$$
E_{H}=\frac{F}{q}=\frac{F}{e}
$$

Now as the deflation of electrons continues in the downward direction due to the corentz force F_{L} It also contributes to the growth of Hall field.

As a result the force F_{H}. Which alts on the elation $0:$ in the upward direction also increases.

These two opposing forces sub reach an Equilibrium at whits stage

$$
F_{L}=F_{H}
$$

\therefore using Equir(1) \& (2) the above Equation becortes

$$
\begin{align*}
-B e V & =-e E H \\
E_{H} & =B V \tag{3}
\end{align*}
$$

If d is the distance between the upperend and cowerent Surfaces of the Slab then

$$
\begin{aligned}
& E_{H}=\frac{V_{H}}{d}\left\{\begin{array}{l}
\text { Elutric } \\
\text { potential }
\end{array}=\frac{\text { potential drop }}{\text { unit length }}\right. \\
& \therefore V_{H}=E_{H} \times d
\end{aligned}
$$

using ' q nh' (3) we have

$$
V_{H}=B V d
$$

Let ' w ' be the thickness of the material in the z-direction
\therefore Its area of cross-section normal to the direction

$$
A=w \cdot d
$$

The current density J

$$
\sigma=\frac{I}{\omega_{d}}
$$

4. If n is the concentration of elatrons

$$
\begin{align*}
& I=n e A V \\
& J=\frac{I}{A}=\frac{\text { DeAV }}{A} \\
& J=D e V \Rightarrow J=\rho V \tag{s}
\end{align*}
$$

where n is charge carrier concentrations ρ is the charge density.

$$
\begin{align*}
& I=\frac{I}{A}=\frac{I}{\omega d} \\
& \rho V=\frac{I}{\omega d} \\
& V=\frac{I}{\rho \omega d} \rightarrow \tag{6}
\end{align*}
$$

Substituting for V_{d} from Equr(6), qu (4) We get

$$
\begin{aligned}
& V_{H}=B V d \\
& V_{H}=B \cdot I \cdot d \\
& V_{H}=\frac{B I}{\rho \omega} \Rightarrow \rho=\frac{B I}{V_{H} \omega}
\end{aligned}
$$

1) C) An elemental solid dielectric material has polarizability $7 \times 10^{-40} \mathrm{Em}^{-2}$. Assuming the internal field to be Lorentz z Calculate the dielutric constant for the material if tue material has 3×10^{28} atoms $/ \mathrm{m}^{3}$.
Sol':- Polarizability $\alpha_{e}=7 \times 10^{-40} \mathrm{Fn}^{-2}$
No of atoms $/ \mathrm{m}^{3} \cdot \mathrm{~N}=3 \times 10^{28}$
The internal field is Lorentz field
Dielectric constant of the material $\epsilon_{\gamma}=$?

$$
\begin{aligned}
&\left(\frac{\epsilon_{\gamma}-1}{\epsilon_{\gamma}+2}\right)=\frac{N \alpha_{e}}{3 \epsilon_{0}} \\
& \frac{\epsilon_{\gamma}-1}{\epsilon_{r}+2}=\frac{3 \times 10^{28} \times 7 \times 10^{-40}}{3 \times 8.854 \times 10^{-12}} \\
&=0.7906 \\
&\left(\epsilon_{\gamma}-1\right)=\left(\epsilon_{\gamma}+2\right) \times 0.7906 \\
& \epsilon_{\gamma}-1=0.7906 \epsilon_{\gamma}+1.5812 \\
& \epsilon_{\gamma}(1-0.7906)=2.5812 \\
& \epsilon_{\gamma}=\frac{2.5812}{0.2094}=12.33
\end{aligned}
$$

\therefore The dielectric constant of the material is 12.33
Q. $8>$ as Deduce the Expression for electrical conductivity of a conduct using the quantum tree election theory of metals.

Sol':- The energy of free elation can be written in terms of momentum ' P ' is

$$
E=\frac{p^{2}}{2 m} \rightarrow(1) \quad\left(\because p^{2}=2 m E\right)
$$

using de-Broglic wandength λ

$$
p=\frac{h}{\lambda}=\left(\because \lambda=\frac{h}{p}\right)
$$

Equip (1) becomes

$$
\begin{equation*}
E=\frac{(b \mid \lambda)^{2}}{2 m \lambda^{2}} \tag{2}
\end{equation*}
$$

E can be Expressed in terms of wavenumber k

$$
\lambda=\frac{2 \pi}{K}
$$

\therefore using the value of $\lambda E \operatorname{Eq}^{2}(2)$ becomes

$$
\begin{align*}
& E_{k}=\frac{b^{2}}{2 m \cdot\left(\frac{2 \pi}{\lambda}\right)^{2}} \\
& E_{k}=\frac{b^{2} k^{2}}{8 m \pi^{2}}
\end{align*}
$$

In the ground state of the free electrons. The maximum energy of electrons is the fermi energy EF

Equt (3) Can be written for this state is

$$
E_{F}=\frac{h^{2}}{8 \pi^{2} m} K^{2} F
$$

We know that the general Expression for drift velocity 0 ? $V d$ is

$$
V d=\frac{e E z}{m}
$$

Where $r \rightarrow$ is the average time elapsed after the collision
\therefore The energy density is

$$
J=D+V d \rightarrow 6(\because J=I / A)
$$

using Equip (5) \& Equal (b) becomes.

$$
\begin{align*}
J & =n e v d \\
J & =n e\left(\frac{e E z}{m}\right) \\
J & =\frac{n e^{2} E z}{m} \\
\text { Also } J & =\sigma E \\
\sigma E & =\frac{D e^{2} E z}{m} \\
\Rightarrow \sigma & =\frac{n e^{2} l}{m}
\end{align*}
$$

If λ is the mean free path \& V is the speed of free elute whose $k \cdot E$ is Equal to Fermi energy Sine only electrons near Fermi level Contribute to the Cordeuity.

$$
r=\frac{\lambda}{v_{f}} \Rightarrow \sigma=\frac{n e^{2}}{m}\left(\frac{\lambda}{v_{f}}\right)
$$

Q8) 6) Describe in brief the various types of polarization mechanisms.
Sol:- There are mainly 3 different mechanisms through which electrical polarization can Occur in dielectric materials when they are subjected to an External Elutric field. All three different types of polarization are identified.

They are
(1) Electric polarization
(2) Ionic polarization
(3) Orientational polarization
(1) Electronic polarization

Charge distribution in the absence of the
field.
Charge displacement
dee to the applied field.
The electronic polarization occurs due to displacement of the positive and negative charges in a dielectric material owing to the application of an External electric field * The separation created between the charges, leads to development of a dipole moment.

* This process occurs throughout the material - Thus the material as a whole will be polarized

The electronic polarizability α_{e} for a rare gas atom is given by

$$
\alpha_{e}=\frac{G_{0}\left(t_{r}-1\right)}{N}
$$ Unit volume.

2) Ionic polarization:-

Ionic polarization occurs only in those dielectric materials which posses ionic bonds Such as in NaCl . When ionic Solids are subjected to an External electric field. The adjacent ions of opposite sign undergo displacement.

* The displacement causes an increase or decrease in the distance of separation between the atoms depending upon the location of the ion pair in the lattice

Ion placement is the absence of the field

Ion displacement due to the applied field.
(3) Orientational polarization:-

This polarization occurs in those dielutric material wheather liquid or solids - which possess molecules with permanent dipole moment. (i.e polar dielectrics)

* The orientation of these molecules will be random normally due to thermal agitation. Because of randomness in orientation the material has net zero dipole moment.
* The orientational polarization is strongly temperature dependent and deceases with inverse of temperature.

In case of polar dielectrics. The orientational polarizability α_{0} is given by

$$
\alpha_{0}=\frac{\mu^{2}}{3 K T}
$$

Q. 087 ch calculate the probability that an energy level at 0.2 eV below fermi tevel is oc cupid at temperature 500 k .

Sols.

$$
\begin{aligned}
& E-E_{F}=0.2 e \mathrm{~V} \quad 0.2 \times 1.6 \times 10^{-19} \mathrm{~J} \\
& f(E) \text { at } 500 \mathrm{~K}=? \\
& f(E)=\frac{1}{e^{\frac{E-E_{F}}{k T}}+1}=\frac{1}{e^{\frac{0.2 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times 500}}+1}=\frac{1}{\frac{3.2 \times 10^{-26}}{690 \times 10^{-23}}+1} \\
&=\frac{1}{102.5+1}= \\
&=e^{4.630^{3} \times 10^{3}+1}= \\
& f(E)=9.66 \times 10^{-3}
\end{aligned}
$$

Module 5
Q9) as Define nano-material and classify the nano-materials based on the dimensional constraints.
Sol':- Nanoscale materials are defined as a set of substances cohere at least one dimension is less than approximately 100 nanometers A nanometre is one millionth of a millimetre -approximately 100,000 times Smaller than the diameter of a human hair.

* Nanomaterials are of interest because at this scale unique optical, magnetic, electrical and other properties emerge. These emergent properties have the potential for great impacts in electronics, medicine and other fields
Classification of Nonomaterials:-
Nanomaterials have Extremely small size which having at least one dimension loonm or less. Nanomaterials can be nanoscale in one dimension (εg surface films), two dimension (εg. Strands or Fibres) or three dimensions (εg, particles). They can Exist in single, fused, aggregated or agglomerated forms with spherical, tubular and irregular shapes. Common types of nonomaterials include nanotubes. dendrimers, quantum dots and fullerenes, Nanomaterials have applications in the field of nanotechnology. \& displays different physical chemical characteristics from normal chemicals (i.e Silver nano, Carbonnano tube, fullerene, photo Catalyst. Carbon Nan \& Silica).
All to siegel Nanostructured materials are classified as zero dimensional, one dimensional, two dimensional, Three-dimensional nan structures.
Q. $9(6)$ Describe the construction and working of Scanning 12 Electron microscope with the help of a neat diagram.
Sol":- Scanning electron microscope is an improved model of an elution microscope. SEN is used to study the three dimensional image of the specimen.
principle:- when the accelerated primary electrons strikes the sample, it produces Secondary electron. These secondary elutrons are collected by a positively charged electron detector Which in turn gives a three dimensional image of the
Sample.
Construction:-
It consists of an electron guan to produced high -energy electron beam. Magnetic condensing lens is used to condense. the electron beam and scanning coil is arrange in between the magnetic condensing lens and the sample.

The alutron detector scintillator is used to collat the Secondary electrons and converted into electrical signal. These signals can be fed into CRO through video amplifier working::

Stream of electrons are produced by the elution gus and the primary electrons are accelerated by the grid and anode. These accelerated primary electrons are made to didn't on the sample through condensing lenses and scanning coil.

This high speed primary clutron on falling over the sample produces low. energy secondary electrons. The collation

- of secondary elutions are very difficult because of their low-energy. Therefore to collet the secondary electrons a very high voltage is applied to the collector.

This is colluted electrons produce skin t relations on photomultiplier tube or detector and are converted into electrical signals. These signals are amplified by the video amplifier. and is fed to the CRO.
civil procedure the electron beam scan the sample from the left to right and again from the left to right etc.

Scan Generator

14
9 c) x rays are diffrcuted in the first order from a crystal with d spacing $208 \times 10^{-10} \mathrm{~m}$ at a glancing angle 60° Calculate the wavelength of x-Rays
Soll:- Given $n=1 \quad d=2.8 \times 10^{-10} \quad \theta=60^{\circ}$

$$
\begin{aligned}
& \lambda=? \\
& n \lambda=d \sin \theta \\
& \lambda=\frac{d \sin \theta}{n} \\
& \lambda=\frac{2.8 \times 10^{-10} \cdot \sin 60^{\circ}}{1} \\
& \lambda=\frac{2.8 \times 10^{-10} \times 0.866}{1} \\
& \lambda=2.42 \times 10^{-10} \mathrm{~m} \\
& \lambda=2.42 \mathrm{~A}^{\circ}
\end{aligned}
$$

\& 105 as Mention the principle and application of x-Ray photo electron spectroscope.
Sol:- Principle:-
Due to the bombardment of x-ray photon on the sample Surface K and L electron are ejected which are further analysed by the analyser. Let us consider Ab, EG' and Ebb' are binding energy of lower energy levels inner core orbitals, where EV, EV' and EV" are the energies of the Valeme shell electron

The monochromatic X-ray photon incident on the sample surface cell electron abstract the energy from this x-ray photon and get ejected in terms of elution. Kinetic energy of the ejected elution is recorded by spectrometer and is given by

$$
E_{k}=h r-E_{b}-\Phi
$$

where. E_{k} is K.E of the ejected electron
$h r \rightarrow$ energy associated with incident photon
$E_{6} \rightarrow$ binding energy ejected elution
$\Phi \rightarrow$ worktunction of the instrument.
The elution spectrometer made up of following components.
is Source, (2) sample holder (3) Analyser, (4) Detector
(3) processor and The Read-ont.

SOURCE:-
The simple x-Ray p hoton source for x-Ray photolution spectra M is x-ra ytube Equipped with magnesium or Aluminium metal target. monochromator crystal can also provide having bandwidth of 0.3 elation volt. much smaller spots on a surface to be examined.

Sample holder:-
Sample holder is located in between the source and the entrance slit of spectrometer. Crystal disperser selects the photon of known energy from the source. And incident on the sample. The area inside the sample holder should be evacuated. within 10^{-5} torr. pressure to avoid contamination of the Surface Sample.

The gaseous sample for introduced in to a sample Compartment through a slit, to provide a pressure of 10^{-12} torr. If the pressure is higher than attenuation of electron beam may take place, weaker signal may be obtained.
Analysers:- , It is hemispherical in shape with very high electrostatic field is applied on analyser. Pressure maintained inside the analyser is 10^{5} torr. when the electron enters, into the hemispherical analyser.
it travels in curved path and radius of curvature depends upon magnitude of field and Kinetic energy of the elution.
Detector: - The elution channel multiplayer tube or transducer are required of x-Ray photoelectron spectroscopy. When single elutron pass through the electron multiplies tube it is converted into number of electrons are pulses of electrons.
B. COX BX (IUAStrate) the working of Transmission Platoon microscope.
Applications of xps \therefore
(1) Identification of active sites
(2) Determination of surface Contamination on Semi condeutons
(3) Study of oxide layers on metals
(4) Analysis of dust on the sample
(5) Determination of oxidation state all the elements of periodic table can be determined
Q. 10\rangle 6) Illustrate the working of TEM.

Sol": - Stream of electrons are produced by the election and is made to fall over the specimen using magnetic condensing lens.
Based on the angle of incidence the Beam is partly transmitted and partly diffracted as shown in fig. Both the transmitted beam and the diffracted beams are recombined at the E-INALED SPHERE of reflation. which encloses all possible reflections from the crystal are specimen Satisfying the bragg's law image as shows is figure. The combined image is called the phase contrast image.

In order to increase the intensity and the contrast of the image and amplitude contrast image has to obtained for stop this can be achiened only by using the transmitting beam and does the diffracted beam has to be eliminated

18 Now in order to eliminate the diffracted beam that beam is passed through the magnetic objective lens and the aperture is shown in fig adjusted in such a way that the diffracted image is illuminated. Thus the final image being alone is passed through the projector. lens for further magnification. Find image is recorded in the fluorescent screen. OS CCD this high contrast image is called Bright field image. In addition it has to be noted that the bright field image obtained is purely due to the clastic scattering non no energy change. that is due to the transmitted beam alone.

