Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

	b	Find the infinite Fourier cosine transform of $f(x)=e^{-\alpha x}, \alpha>0$.	07
	c	Find the inverse Z- Transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$	07
OR			
6	a	Find the Fourier transform of the function $f(x)=\left\{\begin{array}{l}1 \text { for }\|x\| \leq a \\ 0 \text { for }\|x\|>a\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.	06
	b	Obtain the Z- Transform of $\cos n \theta$ and $\operatorname{sinn} \theta$.	07
	c	Solve using Z- Transform $y_{n+2}-4 y_{n}=0$ given that $y_{0}=0, y_{1}=2$.	07
Module - 4			
7	a	Solve $u_{x x}+u_{y y}=0$ fo the following square mesh with boundary values as shown in the following figure	06
	b	Solve numerically $u_{x x}=0.0625 u_{t t}$ Subject to the conditions $u(0, t)=0=u(5, t)$, $u(x, 0)=x^{2}(x-5)$ by taking $h=1$ for $0 \leq t \leq 1$.	07
	c	Find the numerical solution of the parabolic equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ when $u(0, t)=0=u(4, t)$ and $u(x, 0)=x(4-x)$ by taking $h=1$ find the values up to $\mathrm{t}=5$.	07
OR			
8	a	Solve numerically the equation $u_{t}=u_{x x}$ Subject to the conditions $u(0, t)=0=u(1, t), t \geq 0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$. Carryout computations for two levels taking $\mathrm{h}=1 / 3$ and $\mathrm{k}=1 / 36$.	06
	b	Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ Subject to $u(0, t)=0=u(4, t), u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ by taking $h=1, k=0.5$ up to four steps	07
	c	Solve the elliptic equation $u_{x x}+u_{y y}=0$ fo the following square mesh with boundary values as shown. Find the first iterative values of $u_{i}(i=1$ to 9$)$ to the nearest integer.	07

1a) Evaluate(i) $L\left\{\frac{\cos 2 t-\cos 3 t}{t}\right\}$
(ii) $L\left\{t^{2} e^{-3 t} \sin 2 t\right\}$
(i)

$$
\begin{align*}
f(t) & =\frac{\cos 2 t-\cos 3 t}{t} \\
L \alpha f(t)\} & \left.=\int_{s}^{\infty} L \alpha \cos 2 t-\cos 3 t\right\} d s \\
& =\int_{s}^{\infty}\left\{\frac{s}{s^{2}+4}-\frac{s}{s^{2}+9}\right\} d s \\
& =\left[\frac{1}{2} \log \left(s^{2}+4\right)-\frac{1}{2} \log \left(s^{2}+9\right)\right]_{s}^{\infty} \\
& =\left[\frac{1}{2}\left\{\log \left(s^{2}+4\right)-\log \left(s^{2}+9\right)\right\}\right]_{s}^{\infty} \\
& =\left[\frac{1}{2} \log \frac{s^{2}+4}{s^{2}+9}\right]_{s}^{\infty} \\
& =\left[\log \sqrt{\left.\frac{s^{2}+4}{s^{2}+9}\right]_{s}^{\infty}}\right. \\
& =\log 1-\log \sqrt{s^{2}+4} / s^{2}+9 \\
& =0-\log \sqrt{\frac{s^{2}+4}{s^{2}+9}} \\
L \alpha f(t)\} & =\log \sqrt{\frac{s^{2}+9}{s^{2}+4}}
\end{align*}
$$

Q.No.
ii)

$$
\begin{aligned}
& L\left(t^{2} \sin 2 t\right)=(-1)^{2} \frac{d^{2}}{d s^{2}} L(\sin 2 t) \\
& =\frac{d}{d s} \frac{d}{d s}\left[\frac{2}{s^{2}+4}\right] \\
& =\frac{d}{d s}\left[-\frac{4 s}{\left(s^{2}+4\right)^{2}}\right] \\
& =\frac{\left(s^{2}+4\right)^{2}(-4)-(-4 s) 2\left(s^{2}+4\right)+2 s}{\left(s^{2}+4\right)^{4}} \\
& =\frac{4\left(s^{2}+4\right)\left[-\left(s^{2}+4\right)+4 s^{2}\right]}{\left(s^{2}+4\right)^{4}} \\
& =\frac{4\left(3 s^{2}-4\right)}{\left(s^{2}+4\right)^{3}} \\
& L\left\{e^{-3 t} t^{2} \sin 2 t\right\}=4\left[3(s+3)^{2}-4\right] \\
& s \rightarrow s+3 \quad\left[(s+3)^{2}+4\right]^{3}
\end{aligned}
$$

bb)

$$
\begin{align*}
& f(t)= \begin{cases}t & 0 \leq t \leq a \\
2 a-t & a \leq t \leq 2 a\end{cases} \\
& T=2 a \quad \text { we have } \\
& L\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t \tag{mm}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{1-e^{-2 a s}}\left[\int_{0}^{a} e^{-s t} \cdot t d t+\int_{a}^{2 a}(2 a-t) e^{-s t} f(t) d t\right] \\
& =\frac{1}{1-e^{-2 a s}}\left[\left\{t \frac{e^{-s t}}{-s}-(1) \frac{e^{-s t}}{(-s)^{2}}\right\}_{a}^{a}+\right. \\
& \left.\left\{(2 a-t) \frac{e^{-s t}}{-s}-(-1) \frac{e^{-s t}}{(-s)^{2}}\right\}_{a}^{2 a}\right] \tag{100}\\
& L f(t)\}=\frac{1}{1-e^{-2 a s}}\left[-\frac{1}{s}\left(a e^{-a s}-0\right)-\right. \\
& \frac{1}{s^{2}}\left(e^{-a s}-1\right)-\frac{1}{s}\left(0-a e^{-a s}\right) \\
& \begin{aligned}
& s^{2} \\
& \left.+\frac{1}{s^{2}}\left(e^{-2 a s}-e^{-a s}\right)\right] \\
\} & =\frac{1}{\left(1-e^{-a s}\right) s^{2}}\left[-e^{-a s}+1+e^{-2 a s}-e^{-a s}\right]
\end{aligned}
\end{align*}
$$

Q.No.

Solution and Scheme

$$
\begin{aligned}
& L\{f(t)\}=\frac{1}{s^{2}\left(1-e^{-2 a s}\right)\left(1-2 e^{-a s}+e^{-2 a s}\right)} \\
& =\frac{\left(1-e^{-a s}\right)^{2}}{s^{2}\left(1-e^{-a s}\right)\left(1+e^{-a s}\right)} \\
& =\frac{\left(1-e^{-a s}\right)}{s^{2}\left(1+e^{-a s}\right)}=\frac{e^{a s / 2}-e^{-a s / 2}}{s^{2}\left(e^{a s / 2}+e^{-a s / 2}\right)} \\
& \quad=\frac{1}{s^{2}} \frac{\{\sinh (a s / 2)}{\not 2 \cosh (a s / 2)} \\
& L\{f(t)\}=\frac{1}{s^{2}} \tanh \left(\frac{a s}{2}\right)
\end{aligned}
$$

Q.No.

1 C)

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=e^{-t}, y(0)=y^{\prime}(0)=0 \\
\Rightarrow & y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=e^{-t}
\end{aligned}
$$

Taking $L \cdot T$ on both sides

$$
\begin{aligned}
& L\left\{y^{\prime \prime}(t)\right\}+4 L\left\{y^{\prime}(t)\right\}+L\{y(t)\}-4= \\
& \left.\left[s^{2} L \alpha y(t)\right\}-s y(0)-y^{\prime}(0)\right]+ \\
& \left.4\left[s L\{y(t)\}-y(0)^{0}\right]+4 L \alpha y(t)\right\}=\frac{1}{s+1} \\
& L\{y(t)\}\left[s^{2}+4 s+4\right]=\frac{1}{s+1} \\
& L\{y(t)\}=\frac{1}{\left.(s+1)(s+2)^{-t}\right\}} \\
& y(t)=L^{-1}\left\{\frac{1}{\left.(s+1)(s+2)^{2}\right\}}\right.
\end{aligned}
$$

consider $\frac{1}{(S+1)(S+2)^{2}}=\frac{A}{S+1}+\frac{B}{S+2}+\frac{C}{(S+2)^{2}}$
Put $s=-1 \Rightarrow A=1$
put $S=-2 \Rightarrow C=-1$
put $S=0 \Rightarrow B=-1$
Q.No.

Hence $\frac{1}{(s+1)(s+2)^{2}}=\frac{1}{s+1}+\frac{(-1)}{s+2}+\frac{(-1)}{(s+2)^{2}}$

$$
\frac{1}{(s+1)(s+2)^{2}}=\frac{1}{s+1}-\frac{1}{s+2}-\frac{1}{(s+2)^{2}}
$$

$$
L^{-1}\left\{\frac{1}{(s+1)(s+2)^{2}}\right\}=L^{-1}\left\{\frac{1}{s+1}\right\}-L^{-1}\left\{\frac{1}{s+2}\right\}-L^{-1}\left\{\frac{1}{\left(s+2 s^{2}\right.}\right\}
$$

$$
y(t)=e^{-t}-e^{-2 t}-e^{-2 t} \cdot L^{-1}\left\{\frac{1}{s^{2}}\right\}
$$

$$
y(t)=e^{-t}-e^{-2 t}-e^{-2 t}
$$

$$
y(t)=e^{-t}-e^{-2 t}[1+t]
$$

Qb) $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$ by using convolution the

$$
\begin{array}{ll}
\left.f(t)=L^{-1} \alpha \bar{f}(s)\right\} & \left.g(t)=L^{-1} \alpha \bar{g}(s)\right\} \\
\bar{f}(s)=\frac{1}{s^{2}+a^{2}} & \bar{g}(s)=\frac{s}{s^{2}+a^{2}} \\
f(t)=\frac{\sin a t}{a} & g(t)=\cos a t
\end{array}
$$

We have convolution theorem

$$
\begin{align*}
& L^{-1}\{\bar{f}(s) \bar{g}(s)\}=\int_{u=0} f(u) g(t-u) d u \\
& L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}=\int_{u=0}^{t} \frac{\sin a u}{u} \cos (a t-a u) d u \\
& =\frac{1}{2} a \int_{u=0}^{t}\{\sin (a u+a t-a u)+ \\
& \begin{array}{l}
2 a u=0 \quad \sin (a u-a t+a u)\} d u \\
=\frac{1}{2 a} \int_{u=0}^{t}[\sin a t+\sin (2 a u-a t)] d u
\end{array} \\
& =\frac{1}{2 a}\left[\sin a t(a)_{0}^{t}-\left(\frac{\cos [2 a u-a t]}{2 a}\right)_{0}^{t}\right] \\
& =\frac{1}{2 a}\left[\sin a t(t-0)-\frac{1}{2 a}[\cos a t-\cos a t]\right] \\
& L^{-1}\left\{\left(\frac{s}{\left.s^{2}+a^{2}\right)^{2}}\right\}=\frac{t \sin a t}{2 a .}\right.
\end{align*}
$$

2()$f(t)= \begin{cases}\sin t & 0 \leqslant t<\pi \\ \sin 2 t & \pi \leqslant t<2 \pi \\ \sin 3 t & t>2 \pi .\end{cases}$
The given $f(t)$ can be written in the following form by a std property

$$
\begin{gather*}
f(t)=\sin t+[\sin 2 t-\sin t] u(t-\pi) \\
+[\sin 3 t-\sin 2 t] u(t-2 \pi) \\
L \alpha f(t)\}=L\{\sin t\}+ \\
L\{[\sin 2 t-\sin t] u(t-\pi)\}+ \\
L\{[\sin 3 t-\sin 2 t] u(t-2 \pi)\} \tag{1.}
\end{gather*}
$$

consider $L\{[\sin 2 t-\sin t] u(t-\pi)\}$

$$
\begin{align*}
& F(t-\pi)=\sin 2 t-\sin t \\
& F(t)=\sin 2(t+\pi)-\sin (t+\pi) \\
& F(t)=\sin (2 t+2 \pi)-\sin (\pi+t) \\
& F(t)=\sin 2 t+\sin t \\
& \bar{F}(s)=L\{F(t)\}=L \alpha \sin 2 t\}+L \alpha \sin t\} \\
& \bar{F}(s)=\frac{2}{s^{2}+4}+\frac{1}{s^{2}+1}
\end{align*}
$$

Q.No.

$$
\begin{align*}
& \text { ButL\{F(t-T)u(t-r)\}=} e^{-a s} \bar{F}(s) \\
& \text { gL } L\{[\sin 2 t-\sin t] u(t-\pi)\} \\
& =e^{-a s}\left\{\frac{2}{s^{2}+4}+\frac{1}{s^{2}+1}\right\} \\
& \text { Also } G(t-2 \pi)=\sin 3 t-\sin 2 t \\
& G(t)=\sin 3(t+2 \pi)-\sin 2(t+2 \pi) \\
& G(t)=\sin 3 t-\sin 2 t \\
& \bar{G}(s)=\frac{3}{s^{2}+9}-\frac{2}{s^{2}+4} \tag{mim}
\end{align*}
$$

$B \operatorname{at} L\{G(t-2 \pi) u(t-2 \pi)\}=e^{-2 a S} \overline{\epsilon_{\varphi}}(S)$
$L\{[\sin 3 t-\sin 2 t] u(t-2 \pi)]=$

$$
e^{-2 a s}\left[\frac{3}{s^{2}+9}-\frac{2}{s^{2}+4}\right]
$$

Using these in En n (1)

$$
\left.\begin{array}{rl}
L\{f(t)\} & =\frac{1}{s^{2}+1}+e^{-a s}\left[\frac{2}{s^{2}+4}+\frac{1}{s^{2}+1}\right] \\
+e^{-2 a s}\left[\frac{3}{s^{2}+a}-\frac{2}{s^{2}+4}\right]
\end{array}\right]
$$

Q.No. Solution and Scheme

3(a) Let $f(x)=|x|$ in $(-\pi, \pi)$
$f(x)=|x|$ in $-\pi \leq x \leq \pi$ means that the function must be positive in the given interval which consists of negative values and positive values. Hence the given $f(x)$ may be split into the form

$$
f(x)=\left\{\begin{array}{cll}
-x & \text { in } & -\pi \leq x \leq 0 \\
x & \text { in } & 0 \leq x \leq \pi
\end{array}\right.
$$

$$
\text { Period } T=b-a=\pi-(-\pi)=2 \pi \text {. }
$$

The $F=S$ of $f(x)$ having period 2π is given $b y$

$$
\left[\begin{array}{l}
2 \pi \text { is given } b y \tag{fin}\\
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
\end{array}\right.
$$

we shall check for even or odd nature

$$
f(-x)=|-x|=|x|=f(x)
$$

$\Rightarrow f(x)$ is even consequently $b_{A}=0$ where

$$
\begin{align*}
& a_{n}=0 \\
& a_{0}=\frac{2}{\pi} \cdot \int_{0}^{\pi} f(x) d x \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
\end{align*}
$$

Q.No.

$$
\begin{align*}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\frac{2}{\pi}\left[\frac{x^{2}}{2}\right]_{0}^{\pi} \\
& a_{0}=\frac{2}{\pi} \cdot \frac{1}{2}\left[\pi^{2}-0\right]=\frac{1}{\pi} \cdot \pi^{2}=\pi \\
& a_{0}=\pi \quad \Rightarrow \frac{a_{0}}{2}=\frac{\pi}{2} .
\end{align*}
$$

Applying Bernoulli's rule to find a_{n}

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x \cdot d x \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& a_{n}=\frac{2}{\pi}\left[x \frac{\sin n x}{n}-(1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi}
\end{aligned}
$$

since $\sin n \pi=\sin 0=0$

$$
\begin{aligned}
& \Rightarrow a_{n}=\frac{1}{n^{2}} \cdot \frac{2}{\pi}[\cos n x]_{0}^{\pi} \\
& a_{n}=\frac{2}{\pi n^{2}}[\cos \pi n-\cos 0]=\frac{2}{\pi n^{2}}\left[(-1)^{n}-1\right] \\
& a_{n}=-\frac{2}{\pi n^{2}}\left[1-(-1)^{n}\right]
\end{aligned}
$$

Substituting in En (1)

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{-2}{\pi n^{2}}\left\{1-(-1)^{n}\right\} \cos n x .
$$

Q.No.	Solution and Scheme
$3(b)$	$f(x)=\frac{(\pi-x)^{2}}{4}$

period $T=b-a=2 \pi-0=2 \pi$.
The $F . S$ of period 2π is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

we shall check for even or odd nature

$$
f(2 \pi-x)=\frac{[\pi-(2 \pi-x)]^{2}}{4}=\frac{(\pi-x)^{2}}{4}
$$

$f(2 \pi-x)=f(x) \Rightarrow f(x)$ is even function in $(0,2 \pi)$ hence $b_{n}=0$,imp

$$
\begin{align*}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{(\pi-x)^{2}}{4} d x \\
& a_{0}=\frac{1}{2 \pi}\left[\frac{(\pi-x)^{3}}{-3}\right]_{0}^{\pi}=\frac{-1}{6 \pi}\left[0-\pi^{3}\right]=\frac{\pi^{2}}{6} \\
& a_{0}=\frac{\pi^{2}}{6} \Rightarrow \frac{a_{0}}{2}=\frac{\pi^{2}}{12} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{(\pi-x)^{2}}{4} \cos n x d x \\
& =\frac{1}{2 \pi}\left[(\pi-x)^{2}: \frac{\sin n x}{n}-2(\pi-x)(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right. \\
& \left.+2\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} .
\end{align*}
$$

Q.No.

$$
\begin{aligned}
& a_{n}=\frac{-1}{\pi n^{2}}[(\pi-x) \cos n x]_{0}^{\pi} \\
& a_{n}=\frac{-1}{\pi n^{2}}[0-\pi(1)]=-\frac{1}{\pi n^{2}}(-\pi) \\
& a_{n}=\frac{1}{n^{2}}
\end{aligned}
$$

Thus required $F \cdot S$ is

$$
\begin{equation*}
f(x)=\frac{\pi^{2}}{12}+\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}} \tag{2}
\end{equation*}
$$

Put $x=\pi$ in F.S

$$
\begin{align*}
& 0=\frac{\pi^{2}}{12}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n \pi \\
& -\frac{\pi^{2}}{1^{2}}=\frac{1}{n^{2}} \sum_{n=1}^{\infty} \cos n \pi=\sum_{n=1}^{\infty} \frac{1}{n^{2}}(-1)^{n} \\
& \frac{-\pi^{2}}{12}=\left\{\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\right\} \\
& -\frac{\pi^{2}}{12}=\frac{(-1)^{1}}{(1)^{2}}+\frac{(-1)^{2}}{2^{2}}+\frac{(-1)^{3}}{3^{2}}+\frac{(-1)^{4}}{4^{2}}+\cdots \\
& -\frac{\pi^{2}}{12}=-\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots\right] \\
& \frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots
\end{align*}
$$

Q.No. Solitlon und Sohomo

3c) Express y as a l.s lapto second harmonlics

$$
a_{0}=\frac{2}{N} \Sigma y=\frac{2 x}{-\alpha}(2-4)=8
$$

$$
\Rightarrow a_{0} / 2=\frac{8}{2}=4
$$

$$
a_{1}=\frac{2}{N} \sum y \cos x=\frac{2}{8}(1)=\frac{1}{4}=0.25
$$

$$
a_{2}=\frac{2}{N} \sum y \cos 2 x=\frac{2}{8}(0)=0
$$

$$
b_{1}=\frac{2}{N} \sum y \sin x=\frac{2}{8}(-5.166)=-1.2915
$$

$$
b_{2}=\frac{2}{N} \Sigma y \sin 2 x=\frac{2}{8}(-0.03)=-7 \cdot 5 \times 10^{-3}
$$

F.S having period 2π upito second harmonics is given by

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\left(a_{1} \cos x+b_{1} \sin x\right)+\left(a_{2} \cos 2 x+b_{2} \sin 2 x\right) \\
& f(x)=4+[(0.25) \cos x+(-1.2915) \sin x]+ \\
&
\end{aligned}
$$

4a) $f(x)=\pi x-x^{2}$ in $(0, \pi)$
Half range sine series is given by

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x d x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin n x \\
& b_{n}=\frac{2}{\pi}\left[\left(\pi x-x^{2}\right)\left(-\frac{\cos n x}{n}\right)-(\pi-2 x)\left(-\frac{\sin n x}{n^{2}}\right)\right. \\
& \left.\quad+(0-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi}
\end{aligned}
$$

since $\sin 0=\sin n \pi=0$

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi}\left[\frac{1}{n}\left\{\left(\pi x-x^{2}\right) \cos n x\right\}_{0}^{\pi}+\right. \\
& \left.\frac{(-2)}{n^{3}}\{\cos n x\}_{0}^{\pi}\right] \\
& b_{n}=\frac{2}{\pi}\left[\frac{1}{n}[0-0]-\frac{2}{n^{3}}[\cos n \pi-\cos 0]\right] \\
& b_{n}=\frac{2}{\pi}\left[-\frac{2}{n^{3}}\left\{(-1)^{n}-1\right\}\right]=\frac{4}{\pi n^{3}}\left[1-(-1)^{n}\right] \\
& \Rightarrow f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{3}} \sin n x
\end{aligned}
$$

(qb) Let $f(x)=2 x-x^{2}$ in $(0,3)$
Period $T=b-a=3-0=3,2 l=3$ $\lambda=\frac{3}{2}$
F.S of $f(x)$ having period $3 / 2$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 n \pi x}{3}+\sum_{n=1}^{\infty} b_{n} \sin \frac{2 n \pi x}{3}
$$

$$
\begin{equation*}
a_{0}=\frac{2}{3} \int_{0}^{3} f(x) d x \tag{1}
\end{equation*}
$$

$$
a_{n}=\frac{2}{3} \int_{0}^{3} f(x) \cos \frac{2 n \pi x}{3} d x
$$

$$
b_{n}=\frac{2}{3} \int_{0}^{3} f(x) \sin \frac{2 n \pi x}{3} d x
$$

$$
a_{0}=\frac{2}{3} \int_{0}^{3}\left(2 x-x^{2}\right) d x=\frac{2}{3}\left[2 \cdot \frac{x^{2}}{x}-\frac{x^{3}}{3}\right]_{0}^{3}
$$

$$
a_{0}=\frac{2}{3}\{(9-9)-0\}=0 \Rightarrow \frac{a_{0}}{2}=0
$$

$$
a_{n}=\frac{2}{3} \int_{0}^{3}\left(2 x-x^{2}\right) \cos \frac{2 n \pi x}{3} d x
$$

Applying Bernoullis rule

$$
\begin{aligned}
& a_{n}=\frac{2}{3}\left\{\left(2 x-x^{2}\right) \cdot \frac{\sin 2 n \pi x / 3}{2 n \pi / 3}\right. \\
& \left.(2-2 x) \cdot\left[-\frac{\cos 2 n \pi x / 3}{(2 n \pi / 3)^{2}}\right]+(-2)\left[-\frac{\sin 2 n \pi x / 3}{(2 n \pi / 3)^{3}}\right]\right\}_{0}^{3} \\
& \text { since } \sin 0=0=\sin 2 n \pi .
\end{aligned}
$$

Q．No．

$$
\begin{aligned}
& a_{n}=\frac{24}{3} \cdot \frac{x^{3}}{4 \pi^{2} n^{2}}\left[\begin{array}{ll}
2-2 x) \cos 2 n \pi x
\end{array}\right]_{0}^{3} \\
& a_{n}=\frac{3}{2 \pi^{2} n^{2}}[-4 \cos 2 n \pi-2 \cos 0] \\
& a_{n}=\frac{3}{2 \pi^{2} n^{2}}(-4-2)=-\frac{18}{2} \pi^{2} n^{2}=\frac{-9}{\pi^{2} n^{2}}
\end{aligned}
$$

$$
b_{n}=\frac{2}{3} \int_{0}^{3}\left(2 x-x^{2}\right) \sin \frac{2 \pi n x}{3} d x
$$

Applying Bernoulli＇s rule

$$
\begin{aligned}
& b_{n}=\frac{2}{3}\left\{\left(2 x-x^{2}\right)\left(\frac{-\cos 2 n \pi x / 3}{2 n \pi / 3}\right)-\right. \\
& \left.(2-2 x)\left(\frac{-\sin 2 n \pi x / 3}{[2 n \pi / 3]^{2}}\right)+(-2)\left(\frac{\cos 2 n \pi x / 3}{[2 n \pi / 3]^{3}}\right)\right\}_{0}^{3} \\
& b_{n}=\frac{2}{3} \int_{2 n \pi}^{-\frac{3}{2 n}}\left[\left(2 x-x^{2}\right) \cos 2 n \pi x / 3\right]- \\
& \left.-\frac{54}{8 n^{3} \pi^{3}} \cos 2 n \pi x / 3\right\}_{0}^{3} \\
& b_{n}=\frac{2}{3}\left\{-\frac{3}{2 n \pi}[(-3) \cos 2 n \pi-0]-\right. \\
& \left.\frac{54}{8 n^{3} \pi^{3}}[\cos 2 n \pi-\cos 0]\right\} \\
& b_{n}=\underset{\not ⿰ 亻}{\neq 2}\left\{\begin{array}{ll}
-3 n \pi
\end{array}[(-3)]\right\} \quad \because \quad \cos 2 n \pi=1
\end{aligned}
$$

Fa) $f(x)=e^{-|x|}$
Fourier sine transform is givenbly

$$
\begin{aligned}
& F_{S}(u)=\int_{0}^{\infty} f(x) \sin u x d x . \\
& F_{S}(u)=\int_{0}^{\infty} e^{-|x|} \sin u x d x \\
& =\int_{0}^{\infty} e^{-x} \sin u x d x \quad \therefore \quad \therefore|x|=x, x>0
\end{aligned}
$$

$$
\left.F_{s}(u)=\left[\frac{e^{-x}}{(-1)^{2}+u^{2}} \alpha(-1) \sin u x-u \cos u x\right\}\right]_{0}^{\infty}
$$

$$
F_{S}(u)=\frac{1}{1+u^{2}}\left[0-e^{-0}(0-u)\right]
$$

$$
F_{s}(u)=\frac{u}{1+u^{2}}
$$

$$
F_{S}(u)=\frac{1}{1+u^{2}}\left[e^{-x}(-\sin u x-u \cos u x)\right]_{0}^{\infty}
$$

By inverse Fourier sine transform

$$
\begin{aligned}
& \frac{2}{\pi} \cdot \int_{0}^{\infty} F_{s}(u) \sin u x d u=f(x) \\
& \int_{0}^{\infty} F_{s}(u) \sin u x d u=\frac{\pi}{2} f(x)
\end{aligned}
$$

Put $x=m$ where $m>0$ we have

$$
f(x)=e^{-|m|}=e^{-m}, \quad m>_{0}
$$

Q. No.

$$
\Rightarrow \int_{0}^{\infty} \frac{u}{1+u^{2}} \sin u m d u=\frac{\pi}{2} e^{-m}
$$

Thus by changing the variable u to x.

$$
\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}
$$

5b) $f(x)=e^{-\alpha x}$
Infinite fourier cosine transform of $f(x)$ is given by

$$
\begin{aligned}
& \text { of } f(x) \text { is given by } \\
& F_{c}(u)=\int_{0}^{\infty} f(x) \operatorname{cosux} d x \\
& F_{c}(u)=\int_{0}^{\infty} e^{-\alpha x} \cos u x d x \\
& =\left[\frac{e^{-\alpha x}}{(-\alpha)^{2}+u^{2}}(-\alpha \cos u x+u \sin u x)\right]_{0}^{\infty} \\
& =\frac{1}{\alpha^{2}+u^{2}}\left[e^{-\alpha x}(-\alpha \cos u x+u \sin u x)\right] \\
& =\frac{1}{\alpha^{2}+u^{2}}\left[0-e_{0}^{-0}(-\alpha+0)\right] \\
& F_{c}^{\infty}(u)=\frac{\alpha}{\alpha^{2}+u^{2}}
\end{aligned}
$$

SC)

$$
\begin{align*}
& z^{-1}\left\{\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}\right\} \\
& u(z)=\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4} \\
& u(z)=\frac{z(4 z-2)}{z^{3}-5 z^{2}+8 z-4} \\
& \frac{u(z)}{z}=\frac{4 z-2}{z^{3}-5 z^{2}+8 z-4}
\end{align*}
$$

we shall factorize the $D R$ first.

$$
\begin{align*}
& z^{3}-5 z^{2}+8 z-4=(z-1)(z-2)^{2} \tag{im}\\
& \frac{u(z)}{2}=\frac{4 z-2}{(z-1)(z-2)^{2}}
\end{align*}
$$

consider $\frac{4 z-2}{(z-1)(z-2)^{2}}=\frac{A}{z-1}+\frac{B}{z-2}+\frac{C}{(z-2)^{2}}$

$$
4 z-2=A(z-2)^{2}+B(z-1)(z-2)+C(z-1)
$$

Put $z=2 \Rightarrow c=6$

$$
2=1 \Rightarrow A=2
$$

Equating coefficient $q z^{2}$ bothsider

$$
\begin{aligned}
& 0=A+B \Rightarrow B=-A \quad B=-2 \\
& \frac{4 z-2}{(z-1)(z-2)^{2}}=\frac{2}{z-1}+\frac{(-2)}{z-2}+\frac{6}{(z-2)^{2}}+4 m
\end{aligned}
$$

Q.No.

$$
\begin{aligned}
& \frac{4 z-2}{(z-1)(z-2)^{2}}=\frac{2}{z-1}-\frac{2}{z-2}+\frac{6}{(z-2)^{2}} \\
& \frac{u(z)}{z}=\frac{2}{z-1}-\frac{2}{z-2}+\frac{6}{(z-2)^{2}} \\
& u(z)=2 \frac{z}{z-1}-2 \frac{z}{z-2}+3 \cdot \frac{2 z}{(z-2)}
\end{aligned}
$$

Taking inverse $z-T$ both sides

$$
\begin{aligned}
& z^{-1}\{u(z)\}=2 z^{-1}\left\{\frac{z}{z-1}\right\}-2 z^{-1}\left\{\frac{z}{z-2}\right\} \\
&+3 z^{-1}\left\{\frac{2 z}{(z-2)^{2}}\right\} \\
& u_{n}=2 \cdot(1)^{n}-2 \cdot(2)^{n}+3 \cdot n \cdot 2^{n} \\
& u_{n}=2-2^{n+1}+3 n 2^{n}
\end{aligned}
$$

Q.No.

Ea) $f(x)= \begin{cases}1, & |x| \leqslant a \\ 0, & |x|>a\end{cases}$

Fourier transform of $f(x)$ is given by

$$
F(u)=\int_{x=-\infty}^{\infty} f(x) e^{i u x} d x
$$

we write $f(x)$ as

$$
\begin{align*}
& f(x)= \begin{cases}1 & -a \leq x \leq a \\
0 & \text { otherwise }\end{cases} \\
& F(u)=\int_{x=-a}^{a} 1 e^{i u x} d x=\left[\frac{e^{i u x}}{i u}\right]_{a}^{a} \\
& F(u)=\frac{1}{i u}\left\{e^{i u a}-e^{-i u a}\right\} \\
& F(u)=\frac{1}{i u}\{(\cos a u+i \sin a u)-(\cos a u- \\
& \left.\left.F(u)=\frac{1}{i} 2 i \sin a u\right)\right\} \\
& F(u)=\frac{2}{u} \sin a u \\
& F \tag{2m}
\end{align*}
$$

Q. No.

Let us evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$
we have obtained $F(u)=\frac{2 \sin a u}{u}$ Inverse $F \cdot T$ is $\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{-i u x} d u=f(x)$

$$
\begin{align*}
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \sin a u}{u} e^{-i u x} d u \\
& f(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin a u}{u} e^{-i u x} d u \tag{1m}
\end{align*}
$$

Now let us pat $x=0$

$$
\begin{align*}
& f(0)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin a u}{u} e^{-0} d u \\
& 1=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin a u}{u} d u \quad f(0)=1 \text {. } \\
& \Rightarrow \int_{-\infty}^{\infty} \frac{\sin a u}{u} d u=\pi \text {. } \\
& 2 \int_{0}^{\infty} \frac{\sin a u}{u} d u=\pi \quad \because \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \\
& \text { for even fun } \\
& \Rightarrow \int_{0}^{\infty} \frac{\sin a u}{u} d u=\frac{\pi}{2} \\
& \text { Put } a=1 \\
& \text { Q } u=x \\
& \Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} d x=\pi / 2 \tag{2m}
\end{align*}
$$

Q. No. obtain $Z(\cos n \theta)$ \& $Z(\sin n \theta)$ we know that $e^{i n \theta}=\cos n \theta+i \sin n \theta$. $e^{i n \theta}=\left(e^{i \theta}\right)^{n}=a^{n}$ where $a=e^{i \theta}$ wok.t $z\left(a^{n}\right)=\frac{z}{z-a}$

$$
\left.\begin{array}{l}
z\left(a^{n}\right)=\frac{z}{z-e^{i \theta}} \\
z\left(a^{n}\right)=\frac{z}{z-e^{i \theta}} \frac{z-e^{-i \theta}}{z-e^{-i \theta}} \\
=\frac{z\left[z-e^{-i \theta}\right]}{z^{2}-\left(e^{i \theta}-e^{-i \theta}\right)+1} \\
=\frac{z[z-(\cos \theta-i \sin \theta)]}{z^{2}-2 z \cos \theta+1} \\
z\left(a^{n}\right)=\frac{z[(z-\cos \theta)+i \sin \theta]}{z^{2}-2 z \cos \theta+1} \\
z[\cos n \theta+i \sin n \theta]=\left\{\frac{e^{i \theta}-e^{-i \theta}=2 \cos \theta}{z^{2}-2 z \cos \theta+1}\right.
\end{array}\right\}
$$

Q. No.
separating the real and imaginary parts bothsides we get

$$
\begin{aligned}
& z(\cos n \theta)=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1} \\
& z(\sin \theta \theta)=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}
\end{aligned}
$$

(bc) $\quad y_{n+2}-4 y_{n}=0 \quad y_{0}=0 \quad y_{1}=2$.
Taking $z-T$ on both sides

$$
\begin{aligned}
& z\left\{y_{n+2}\right\}-4 z\left\{y_{n}\right\}=z(0) \\
& z^{2}\left\{y(z)-y_{0}-\frac{y_{1}}{z}\right\}-4 y(z)=0 \\
& z^{2}\left\{y(z)-0-\frac{1}{z}(2)\right\}-4 y(z)=0 \\
& y(z)\left[z^{2}-4\right]-\frac{2}{z} \cdot z^{x}=0 \\
& \left(z^{2}-4\right) y(z)=\frac{2 z}{\left(z^{2}-4\right)} \\
& y(z)=\frac{2 z}{z^{2}-4} \Rightarrow \frac{y(z)}{z}=\frac{2}{z^{2}-4}+(\ln) \\
& \text { Consider } \frac{2}{z^{2}-4}=\frac{2}{(z+2)(z-2)} \\
& \frac{2}{(z-2)(z+2)}=\frac{A}{z-2}+\frac{B}{z+2}
\end{aligned}
$$

Q.No.

$$
2=A(z+2)+B(z-2)
$$

put $z=2 \Rightarrow A=1 / 2$

$$
z=-2 \Rightarrow B=-1 / 2 .
$$

$$
\frac{2}{z^{2}-4}=\frac{A}{z-2}+\frac{B}{z+2}=\frac{(1 / 2)}{z-2}+\frac{(-1 / 2)}{z+2}
$$

$$
\frac{2}{z^{2}-4}=\frac{1}{2} \frac{1}{z-2}-\frac{1}{2} \frac{1}{z+2}
$$

$$
\frac{y(z)}{z}=\frac{1}{2} \frac{1}{z-2}-\frac{1}{2} \frac{1}{z+2}
$$

$$
y(z)=\frac{1}{2} \frac{z}{z-2}-\frac{1}{2} \frac{z}{z+2}
$$

Taking inverse $Z-T$ bort sides

$$
\begin{aligned}
& z^{-1}\{y(z)\}=\frac{1}{2} z^{-1}\left\{\frac{z}{z-2}\right\}-\frac{1}{2} z^{-1}\left\{\frac{z}{z+2}\right\} \\
& y_{n}=\frac{1}{2}(2)^{n}-\frac{1}{2}(-2)^{n}
\end{aligned}
$$

$$
y_{n}=2^{n-1}+(-2)^{n-1} \text { is required }
$$

sols.

$$
\because z^{-1}\left\{\frac{z}{z-a}\right\}=a^{n}
$$

7 a) Solve $U_{x x}+U_{y y}=0$ for the following square mesh with boundary values as shown in the following figure

S.F \rightarrow std \wedge formula
D.F \rightarrow Diagonal 5 pt formula

Sol 2
U_{5} is located at the centre of the region

$$
u_{5}=\frac{1}{4}(0+21+17+21-1)=12 \cdot 525(\mathrm{~S}-\mathrm{F})
$$

Next we shall compute $u_{7}, u_{9}, u_{1}, u_{3}$ by applying D.F

$$
\begin{align*}
& u_{7}=\frac{1}{4}(0+12.525+0+12.1)=6.15625 \\
& u_{9}=\frac{1}{4}(12.1+21+12.525+9)=13.65625 \tag{arp}\\
& u_{1}=\frac{1}{4}(0+17+0+12.525)=7.38125 \\
& u_{3}=\frac{1}{4}(12.525+18.6+17+21)=17.28125
\end{align*}
$$

Finally we shall compute $U_{2}, u_{4}, u_{6} \&$ u_{8} by $s . F$

$$
\begin{aligned}
& u_{8} b y s \cdot F \\
& u_{2}=\frac{1}{4}(7.38125+17.28125+17+12.525) \\
& u_{2}=13.546875 \\
& u_{4}=\frac{1}{4}(0+12.525+7.38125+6.15625) \\
& u_{4}=6.515695 \\
& u_{6}=\frac{1}{4}(12.525+21+17.28125+13.65625) \\
& u_{6}=1.6 .115625 \\
& u_{8}=\frac{1}{4}(6.15625+13.65625+12.525+12.1) \\
& u_{8}=11.109375
\end{aligned}
$$

Q.No.

Thus the rapwered values of (x, y) at the interior mesh points correct to two decimal places are as follows

$$
\begin{array}{lll}
u_{1}=7.38 & u_{2}=13.55 & u_{3}=17.28 \\
u_{4}=6.52 & u_{5}=12.53 & u_{6}=16.12 \\
u_{7}=6.16 & u_{8}=11.11 & u_{9}=13.66
\end{array}
$$

Q. No.

7 b) Solve numerically $U_{x x}=0.0625 \mathrm{U}_{\mathrm{b}}$. subject to the condition $u(0, t)=0$ $u(5, t)=0, u(x, 0)=x^{2}(x-5) \omega$, ut $(x, 0)=0$ by taking $h=1$ for $0 \leq t \leq 1$
Sole. The wave Eq in std form is $c^{2} u_{x x}=u_{t t}$ hence given Eq n be put in the form $\frac{1}{0.0625} u_{x x}=u_{t t}$ or $16 u_{x x}=u_{t}$ where $c^{2}=16 \Rightarrow c=4$ since $h=1$ we have $k=\frac{h}{c}=\frac{1}{4}=0.25$ step size of $x: h=1$ where $0 \leq x \leq 5$ step size q, $t: k=0.25$ where $0 \leqslant t \leqslant 1$. values of x are $0,1,2,3,4,5$ values of t are $0,0.25,0.5,0.75,1$ we have the following table q initial table. The value of $1^{\text {st }}$ and last column are zero since $u(0, t)=0=u(5, t)$

t	x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
t		0	1	2	3	4	5
t_{0}	0	$u_{0,0}=0$	$u_{1,0}$	$u_{2,0}$	$u_{3,0}$	$u_{4,0}$	$u_{5,0}=0$
t_{1}	0.25	$u_{0,1}=0$	$u_{1,1}$	$u_{2,1}$	$u_{3,1}$	$u_{4,1}$	$u_{5,1}=0$
t_{2}	0.5	$u_{0,2}=0$	$u_{1,2}$	$u_{2,2}$	$u_{3,2}$	$u_{4,2}$	$u_{5,2}=0$
t_{3}	0.75	$u_{0,3}=0$	$u_{1,3}$	$u_{2,3}$	$u_{3,3}$	$u_{4,3}$	$u_{5,3}=0$
t_{4}	1	$u_{0,4}=0$	$u_{1,4}$	$u_{2,4}$	$u_{3,4}$	$u_{4,4}$	$u_{5,4}=0$

Now consider $u(x, 0)=x^{2}(x-5)$

$$
\begin{aligned}
& \text { Now consider } u(x, 0)=x^{2}(x-5) \\
& u(1,0)=1^{2}(1-5)=-4 \quad u(2,0)=2^{2}(2-5)=-12 . \\
& u(3,0)=3^{2}(3-5)=-18 u(4,0)=4^{2}(4-5)=-16
\end{aligned}
$$

Q. No.

Next consider $u_{i}^{1}=\frac{1}{2}\left[u_{i-1,0}+u_{i+1,0}\right]$

$$
\begin{align*}
& u_{1,1}=\frac{1}{2}\left[u_{00}+u_{2,0}\right]=\frac{1}{2}[0-12]=-6 \\
& u_{2,}=\frac{1}{2}\left[u_{10}+u_{30}\right]=\frac{1}{2}[-4-18]=-11 \\
& u_{31}=\frac{1}{2}\left[u_{2,0}+u_{4}, 0\right]=\frac{1}{2}[-12-16]=-14 \\
& u_{4}, 1=\frac{1}{2}\left[u_{3,0}+u_{5,0}\right]=\frac{1}{2}[-18+0]=-9 \tag{ym}
\end{align*}
$$

we consider Ex plicit formula to find the remaining v alnes in the table $u_{i} j+1=u_{i-1} j+u_{i+1}, j-u_{i} j-1$

$$
u_{12}=U_{01}+u_{21}-u_{1} 0=0-11+4=-7
$$

$$
\begin{align*}
& u_{22}^{\prime}=u_{11}+u_{31}^{\prime}-u_{2,0}=-6-14+12=-8 \\
& u_{22}^{\prime}=u_{2}+u_{4}^{\prime}
\end{align*}
$$

$$
\begin{aligned}
& u_{32}=u_{21}+u_{411}^{1}-u_{30}=-11-9+18=-2 \\
& u_{42}=u_{31}+u_{511}-u_{40}=-11
\end{aligned}
$$

$$
u_{42}=u_{31}+u_{511}-u_{40}=-14+0+16=2
$$

$$
u_{13}=u_{0,2}+u_{2,2}-u_{1,1}=0-8+6=-2
$$

$$
u_{2,3}=u_{1,2}+u_{3,2}^{\prime}-u_{2,1}=-7-2+11=2
$$

$$
u_{33}=u_{2,2}+u_{42}-u_{3,1}=-8+2+14=8
$$

$$
u_{4,3}=u_{32}+u_{5,2}-u_{4} 1=-2+0+9=7
$$

$$
u_{1,4}=40,3+u_{2,3}-u_{1,2}=0+2+7=9
$$

$$
u_{2,4}=u_{1,3}+u_{3,3}-u_{2,2}=-2+8+8=u_{4}
$$

$$
u_{3,4}^{\prime}=u_{2,3}+u_{4,3}-u_{3,2}=2+7+2=11
$$

$$
u_{4.4}=u_{3.3}+u_{5.3}-u_{4.2}=8+0-2=6
$$

Thus the repaired vale of Gif are tabulated.

$t x$	0	1	2	3	4	5
0	0	-4	-12	-18	-16	0
0.25	0	-6	-11	-14	-9	0
0.5	0	-7	-8	-2	2	0
0.75	0	-2	2	8	7	0
1	0	9	14	11	6	0

Q.No.

7 c) Find the numerical solution of parabo lie Eph $\frac{\partial^{2} u}{\partial x^{0}}=2 \frac{\partial u}{\partial t}$ when $u(0, t)=0=u(4, t)$ and $u(x, 0)=x(4-x)$ by taking $h=1$ find the values upto $t=5$
So12. The sta form of one dimensional heat En is $u_{\text {}}=c^{2} u_{x x}$ and given Eqn can be pat in the form $u_{t}=\frac{1}{2} u_{x x} \Rightarrow c^{2}=\frac{1}{2}$ $\sin c e h=1 \Rightarrow k=h^{2} / 2 c^{2}=\frac{1}{2 \cdot \frac{1}{2}}=1$
The values iq x in $0 \leq x \leq 4$ with $h=1$ are $0,1,2,3,4$ and the valines of t with $k=1$ are $0,1,2,3,4,5$. given that $u(0, t)=0=u(4, t) \Rightarrow$ The values in the first and last column are zero.

	x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
t	0	1	2	3	4	
t_{0}	0	$u_{0,0}=0$	$u_{1,0}$	$u_{2,0}$	$u_{3,0}$	$u_{4,0}=0$
t_{1}	1	$u_{0,1}=0$	$u_{1,1}$	$u_{2,1}$	$u_{3,1}$	$u_{4,1}=0$
t_{2}	2	$u_{0,2}=0$	$u_{1,2}$	$u_{2,2}$	$u_{3,2}$	$u_{4,2}=0$
t_{3}	3	$u_{0,3}=0$	$u_{1,3}$	$u_{2,3}$	$u_{3,3}$	$u_{4,3}=0$
t_{4}	4	$u_{0,4}=0$	$u_{1,4}$	$u_{2,4}$	$u_{3,4}$	$u_{4,4}=0$
t_{5}	5	$u_{0,}=0$	$u_{1,5}$	$u_{2,5}$	$u_{3,5}$	$u_{4,5}=0$

consider the initial condition $u(x, 0)=$

$$
\begin{align*}
& u(1,0)=1(4-1)=3, u(2,0)=2(4-2)=4(4-x) \\
& u(3,0)=3(4-3)=3 \\
& u_{i} j+1=\frac{1}{2}\left[u_{i-1} j+u_{i+1}, j\right]=(1 m) \\
& \text { Inperticu ar } u_{i, 1}=\frac{1}{2}\left[u_{i-1,0}+u_{i+1}, 0\right] \\
& u_{1}, 1=\frac{1}{2}\left[u_{0}+u_{2,}\right]=\frac{1}{2}[0+4]=2
\end{align*} \quad\left(\begin{array}{l}
\text { m }
\end{array}\right)
$$

$$
\begin{aligned}
& u_{1,}=\frac{1}{2}\left[u_{0,0}+u_{2,0}\right]=\frac{1}{2}[0+4]=2 \\
& u_{2,1}=\frac{1}{2}\left[u_{10}+u_{3,0}\right]=\frac{1}{2}[3+3]=3 \\
& u_{3,1}=\frac{1}{2}\left[u_{2,0}+u_{4,0}\right]=\frac{1}{2}[4+0]=2 .
\end{aligned}
$$

Q.No.

Again from Eqn(i) $U_{i, 2}{ }^{2} \frac{1}{2}\left[U_{i-1,1}+u_{i+1,1}\right]$

$$
u_{1,2}=\frac{1}{2}\left[u_{0,1}+u_{2,1}\right]=\frac{1}{2}[0+3]=1+5
$$

$$
\begin{equation*}
u_{22}=\frac{1}{2}\left[u_{1,1}+u_{3,1}\right]=\frac{1}{2}[2+2]=2 \tag{1m}
\end{equation*}
$$

$$
u_{3,2}=\frac{1}{2}\left[u_{2,1}+u_{41}\right]=\frac{1}{2}[3+0]=1-5
$$

Again fromen (1) $u_{i, 3}=\frac{1}{2}\left[u_{i-1,2}+u_{i+1,2}\right]$

$$
\begin{align*}
& u_{1,3}=\frac{1}{2}\left[u_{0,2}+u_{2,2}\right]=\frac{1}{2}[0+2]=1 \tag{1m}\\
& u_{2,3}=\frac{1}{2}\left[u_{1,2}+u_{3,2}\right]=\frac{1}{2}[1-5+1.5]=1,5 \\
& u_{3,3}=\frac{1}{2}\left[u_{2,2}+u_{4,2}\right]=\frac{1}{2}[2+0]=1
\end{align*}
$$

Also from (i) $U_{i, 4}=\frac{1}{2}\left[u_{i-1}, 3+u_{i+1}, 3\right]$

$$
\begin{aligned}
& u_{1,4}=\frac{1}{2}\left[u_{0,3}+u_{2,3}\right]=\frac{1}{2}[0+105]=0.75 \\
& u_{2,4}=\frac{1}{2}\left[u_{1,3}+u_{3,3}\right]=\frac{1}{2}[1+1]=1 \\
& u_{3,4}=\frac{1}{2}\left[u_{2,3}+u_{4}, 3\right]=\frac{1}{2}[1.5+0]=0,75
\end{aligned}
$$

Again from (1) $u_{i ; 5}=\frac{1}{2}\left[u_{i-1}, 4+u_{i+1}, 4\right]$

$$
\begin{aligned}
& u_{1,5}=\frac{1}{2}\left[u_{0,4}+u_{2,4}\right]=\frac{1}{2}[0+1]=0.5 \\
& u_{2,5}=\frac{1}{2}\left[u_{1,4}+u_{3,4}\right]=\frac{1}{2}[0,75+0.75]=0.75 \\
& u_{3,5}=\frac{1}{2}\left[u_{2,4}+u_{4}, 4\right]=\frac{1}{2}[1+0]=0.5
\end{aligned}
$$

Thus the required values q leij are tabulated

$t x$	0	1	2	3	4
0	0	3	4	3	0
1	0	2	3	2	0
2	0	1.5	2	1.5	0
3	0	1	1.5	1	0
4	0	0.75	1	0.75	0
5	0	0.5	0.75	0.5	0

8a) Solve numerically the $\varepsilon_{\text {n }} u_{t}=u_{x} x$
subject to the conditions $u(0, t)=0=u(1, t)$ $t \geqslant 0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$ carryout (Amputations for twolevels taking. $h=1 / 3$ and $k=1 / 36$
Sole we have schmidt explicit formula

$$
\begin{aligned}
& U_{i j+1}=\alpha U_{i-1}, j+(1-2 \alpha) u_{i, j}+\alpha u_{i+1, j} \\
& \text { where }
\end{aligned}
$$

where $\alpha=k c^{2} / h^{2}$ we have $c^{2}=1, h=1$

$$
k=1 / 36 \quad \therefore \quad \alpha=1 / 4
$$

Hence gen (1) becomes

$$
\begin{align*}
& u_{i, j+1}=\frac{1}{4} u_{i-1}, j+\frac{1}{2} u_{i, j}+\frac{1}{4} u_{i+1}, j \\
& u_{i, j+1}=\frac{1}{2}\left[u_{i-1}, j+2 u_{i}, j+u_{i+1}, j\right] \tag{2}
\end{align*}
$$

since $h=\frac{1}{3}$ the values of x in $0 \leq x \leq 1$

$$
\begin{align*}
& x_{0}=0, x_{1}=1 / 3, x_{2}=2 / 3, x_{3}=3 / 3=1 \\
& u(0, t)=0 \Rightarrow u_{0,0}=u_{0,1}=u_{0,2} \mp u_{0,3}=0 \\
& u(1, t)=0 \Rightarrow u_{3,0}=u_{3,1}=u_{3,2}=u_{3,3}=0 \tag{im}
\end{align*}
$$

Also $u(x, 0)=\sin \pi x$, hence we have

$$
\begin{aligned}
& u\left(x_{1}, 0\right)=u_{1,0}=\sin \pi / 3=0.866 \\
& u\left(x_{2}, 0\right)=u t_{1,0}=\sin 2 \pi / 3=0.866
\end{aligned}
$$

We shall compute $U_{1}, 1, U_{2}, 1$ (1 $1^{\text {st }}$ level) and $u_{1,2}, u_{2,2}$ ($2^{\text {nd }}$ level) using Eq (2)

$$
\begin{aligned}
& u_{1,1}=\frac{1}{4}\left[u_{00}+2 u_{1,0}+u_{2,0}\right]=0.6495 \\
& u_{2,1}=\frac{1}{4}\left[u_{1,0}+2 u_{2,0}+u_{3,0}\right]=0.6495 \\
& u_{1,2}=\frac{1}{4}\left[u_{0,1}+2 u_{1,1}+u_{2,1}\right]=0.487125 \\
& u_{2,2}=\frac{1}{4}\left[u_{1,1}+2 u_{2,1}+u_{3,1}\right]=0.487125
\end{aligned}
$$

8b) Solve the wave $\varepsilon_{q n} \frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$
subject to $u(0, t)=0=u(4, t)$ $u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ by taking $h=1 \quad k=005$ unto 4 steps
Ans: Step size of $x: h=1$
step size of $t: k=005$
since $0 \leq x \leq 4$, the pts of x are $0,1,2,3,4$
since $k=0=5$, the pts of t are $0,0.5,1,1.5,2$
The values of $1^{\text {st }} \&$ last column are zero since $u(0, t)=0=u(4, t)$

x		x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
	0	1	2	3	4	
t_{0}	0	$u_{00}=0$	$u_{1,0}$	$u_{2,0}$	$u_{3,0}$	$u_{4,0}=0$
t_{1}	0.5	$u_{0,1}=0$	$u_{1,1}$	$u_{2,1}$	$u_{3,1}$	$u_{4,1}=0$
t_{2}	1	$u_{0,2}=0$	$u_{1,2}$	$u_{2,2}$	$u_{3,2}$	$u_{4,2}=0$
t_{3}	1.5	$u_{0,3}=0$	$u_{1,3}$	$u_{2,3}$	$u_{3,3}$	$u_{4,3}=0$
t_{4}	2	$u_{0,4}=0$	$u_{1,4}$	$u_{2,4}$	$u_{3,4}$	$u_{4,4}=0$

Now consider $u(x, 0)=x(4-x)$

$$
\begin{align*}
& u_{1,0}=1(4-1)=3 \quad u_{2,0}=2(4-2)=4 \tag{im}\\
& u_{3,0}=3(4-3)=1
\end{align*} \text { (rm) }
$$

Next consider $u_{i, 1}=\frac{1}{2}\left[u_{i-1}, 0^{+} u_{i+1,0}\right]$

$$
\begin{align*}
& u_{1,1}=\frac{1}{2}\left[u_{0,0}+u_{2,0}\right]=\frac{1}{2}[0+4]=2 \tag{1m}\\
& u_{2,1}=\frac{1}{2}\left[u_{1,0}+u_{3,0}\right]=\frac{1}{2}[3+3]=3 \\
& u_{3,1}=\frac{1}{2}\left[u_{2,0}+u_{4,0}\right]=\frac{1}{2}[4+0]=2
\end{align*}
$$

Now consider Explicit formula to find remeurning values

$$
\begin{align*}
& u_{1, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j} j-1 \\
& u_{1,2}=u_{0,1}+u_{2,1}-u_{1,1}=0+3-3=0 \\
& u_{2,2}=u_{1,1}+u_{3,1}-u_{2,0}=2+2-4=0 \tag{1m}\\
& u_{3,2}=u_{2,1}+u_{4,1}-u_{3,0}=3+0-3=0 \\
& u_{1,3}=u_{0,2}+u_{2,2}-u_{1,1}=0+0-2=-2 \\
& u_{2,3}=u_{1,2}+u_{3,2}-u_{2,1}=0+0-3=-3 \\
& u_{3,3}=u_{2,2}+u_{4,2}-u_{3,1}=0+0-2=-2 . \\
& u_{1,4}=u_{0,3}+u_{2,3}-u_{1,2}=0-3-0=-3 \\
& u_{2,4}=u_{1,3}+u_{3,3}-u_{2,2}=-2-2-0=-4 \\
& u_{3,4}=u_{2,3}+u_{4,3}-u_{3,2}=-3+0-0=-3
\end{align*}
$$

Thus requested values of u jj are tabulated

x					
	0	1	2	3	4
	0	2	4	3	0
	0	0	3	2	0
	0	-2	-3	-2	0
	0	-3	4	-3	0

8C) Solve the elliptic En $u_{x} x+4 y y=0^{\circ}$ for the following square mesh with boundary values as shown. Find the first iterative values $q u_{i}$ $C i=1 t 0$ a) to the nearest integer

$$
\text { S.F - std } 5 \text { pt }
$$

formula
$D F$ - Diagonal 5 pt formula
sol?. U_{5} is located at the centre of the region and hence by the std 5 pt formula

$$
\begin{aligned}
& \text { formula } \\
& u_{5}=\frac{1}{4}[2000+2000+1000+1000] \\
& u_{5}=1500
\end{aligned}
$$

\qquad
Next we shall compute $u_{1}, 4_{3}, u_{7}, u_{9}$ by the diagonal 5 pt formula

$$
\begin{align*}
& u_{1}=\frac{1}{4}(0+1500+2000+1000)=1125 \\
& u_{3}=\frac{1}{4}(1000+2000+1500+0)=1125 \tag{lm}\\
& u_{7}=1125=u_{9}
\end{align*}
$$

Further we compute $u_{2}, u_{4}, u_{6}, u_{8}$ by S.F

$$
\begin{align*}
& u_{2}=\frac{1}{4}[1125+1125+1000+1500]=1187.5 \\
& u_{4}=\frac{1}{4}[2000+1500+1125+1125]=1437.5 \\
& u_{6}=\frac{1}{4}[1500+2000+1125+1125]=1437.5 \\
& u_{8}=\frac{1}{4}[1125+1125+1500+1000]=1187.5 \tag{m}
\end{align*}
$$

Q. No.

These values are regarded as the initial approximations to commence the Liebonann's iteration we compute $\mu_{i}(i=1$ to a) in the serial order by using the latest iteration values by applying S.F

$$
\begin{align*}
& u_{1}^{(1)}=\frac{1}{4}[1000+1187 \cdot 5+500+1437.5]=1031 \cdot 25 \\
& u_{2}^{(1)}=\frac{1}{4}[1031.25+1125+1000+1500]=1164.0625 \\
& u_{3}^{(1)}=\frac{1}{4}[1164.0625+1000+500+1437 \cdot 5]=1025 \cdot 39 \\
& u_{4}^{(1)}=\frac{1}{4}[2000+1500+1031.25+1125]=14.14 .0625 \\
& u_{5}^{(1)}=\frac{1}{4}[141400625+1437.5+1164.0625+1187.5] \tag{3~m}\\
& u_{6}^{(1)}=\frac{1}{4}[1300.78+2000+1025039+1125]=1362.79 \\
& u_{7}^{(1)}=\frac{1}{4}[1000+118705+1414.0625+500]=1025.39 \\
& u_{8}^{(1)}=\frac{1}{4}[1025.4+1125+1300.79+1000]=1112.79 \\
& u_{9}^{(1)}=\frac{1}{4}[1112.79+1000+1362.79+500]=993.89
\end{align*}
$$

Thus required first iterative values to the nearest integer are as follows

$$
\begin{align*}
& u_{1}=1031, \quad u_{2}=1164, \quad u_{9}=1025 \quad u_{4}=1414 \\
& u_{5}=1301, u_{6}=1363, u_{7}=1025 \tag{m}\\
& u_{8}=1113 \quad u_{9}=994
\end{align*}
$$

q(a) R-K method
By data $\frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y^{2}, y(0)=1$

$$
, y^{\prime}(0)=0
$$

Put $\frac{d y}{d x}=z \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x}$

$$
\frac{d z}{d x}=x z^{2}-y^{2}, y=1, z=0 \text { at } x=0 \text {. }
$$

Now we have system of $\varepsilon_{2 n}$

$$
\begin{aligned}
& f(x, y, z)=z . \\
& g(x, y, z)=x z^{2}-y^{2}, \quad x_{0}=0 \quad y_{0}=1 \\
& h=0.2, z_{0}=0
\end{aligned}
$$

we shall compute the following

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0} z_{0}\right)=(0.2) f(0,1,0) \\
& k_{1}=(0.2)(0)=0 \\
& l_{1}=h g\left(x_{0}, y_{0} z_{0}\right)=0.2[9(0,1,0)] \\
& l_{1}=0.2\left\{0-1^{2}\right\}=-0.2 \\
& k_{2}=h f\left(x_{0}+\frac{h}{2} y_{0}+\frac{k_{1}}{2}, z_{0}+\frac{l_{1}}{2}\right) \\
& k_{2}=0.2 f(0.1,1,-0.1)=(0.2)(-0.1) \\
& k_{2}=-0.02 \\
& l_{2}=h g\{0.1,1,-0.1\} \\
& =0.2\left[(0.1)(-0.1)^{2}-1^{2}\right]=-0.1998
\end{aligned}
$$

Q.No.
Solution and Scheme

$$
\begin{aligned}
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}, z_{0}+\frac{l_{2}}{2}\right) \\
& k_{3}=0.2 f(0.1,0.99,-0.0999) \\
& k_{3}=(0.2)(-0.0999)=-0.01998 \\
& l_{3}=h g\left(x_{0}, y_{0}, z_{0}\right)= \\
& l_{3}=(0.2) g(0.1,0.99,-0.0999) \\
& l_{3}=0.2\left[(0.1)(-0.0999)^{2}-(0.99)^{2}\right]=-0.1958 \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}, z_{0}+l_{3}\right) \\
& k_{4}=0.2 f(0.2,0.98002,-0.1958) \\
& k_{4}=(0.2)(-0.1958)=-0.03916 \\
& l_{4}=h 9(0.2,0.98002,-001958) \\
& l_{4}=(0.2)\left[(0.2)(-0.1958)^{2}-(0.98002)^{2}\right] \\
& l_{4}=-0.19055 \\
& \left.k=\frac{1}{6} \alpha k,+2 k 2+2 k_{3}+k_{4}\right\} \\
& k=\frac{1}{6} \alpha 0+2(-0.02)+2(-0.01998)+ \\
& k=-0.0199 . \\
& y\left(x_{0}+h\right)=y 0+k=1-0.0199 \\
& y(0.2)=0.9801 .
\end{aligned}
$$

ab) Euler's Eq

$$
-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

\qquad

Let I be an Extremum along some curve $y^{\prime}=g(x)$ passing through $p\left(x_{1} y_{1}\right)$ and $Q\left(x_{2} y_{2}\right)$
let $y=y(x)+h \alpha(x)$
(1) bethe neighbouring curve (where h is small) joining these points so that we must have $\alpha\left(x_{1}\right)=0$ at $p Q$ $\alpha\left(x_{2}\right)=0$ at Q when $h=0$ these two curves coincide thus making I an Extremum ie

$$
\begin{equation*}
I=\int_{x_{1}}^{x_{2}} f^{\prime}\left\{x, y(x)+h \alpha(x), y^{\prime}(x)+h \alpha^{\prime}(x)\right\} d x \tag{2m}
\end{equation*}
$$

is extremum when $h=0$
This requires $\frac{d}{d h} I=0$ when $h=0$ treating I to be a function of s
Q.No.

$$
\frac{d}{d h}=\int_{x_{1}}^{x_{2}} \frac{\partial}{\partial h} f\left\{x_{1} y(x)+h \alpha(x), y^{\prime}(x)+h \alpha^{\prime}(x)\right\} d x .
$$

Applying chain rule for partial derivative in RHS wehave

$$
\frac{d I}{d h}=\int_{x_{1}}^{x_{2}}\left\{\frac{\partial f}{\partial x} \frac{\partial x}{\partial h}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial h}+\frac{\partial f}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial h}\right\} \underbrace{}_{-3}\} d x
$$

But h is independent $q x \Rightarrow \frac{\partial x}{\partial h}=0$
Let as consider (1) α diff w hr Let us consider (1) Q diff wor.t x

$$
\begin{equation*}
y^{\prime}=y^{\prime}(x)+h \alpha^{\prime}(x) \tag{4}
\end{equation*}
$$

we have from (1) $\frac{\partial y}{\partial h}=\alpha(x)$ and
from (4) $\frac{\partial y^{\prime}}{\partial h}=\alpha^{\prime}(x)$
using these in \& n

$$
\begin{equation*}
\frac{d}{d h} I=\int_{\lambda_{1}}^{\lambda_{2}}\left[\frac{\partial f}{\partial y} \alpha(x)+\frac{\partial f}{\partial y^{\prime}} \cdot \alpha^{\prime}(x)\right] d x \tag{2m}
\end{equation*}
$$

Integrating the $2^{\text {nd }}$ term of RHS

$$
\begin{aligned}
& \frac{d I}{d h}>\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y} \alpha(x) d x\right]+ \\
& \left.\left[\frac{\partial f}{\partial y^{\prime}} \alpha(x)\right]_{x_{1}}^{x_{2}}-\int_{x_{1}}^{x_{2}} \alpha(x) \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) d x\right]
\end{aligned}
$$

Q.No.

$$
\begin{aligned}
& \frac{d I}{d h}=\int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial y} \alpha(x) d x+ \\
& \\
& \left\{\frac{\partial f}{\partial y} \alpha\left(x_{2}\right)-\frac{\partial f}{\partial y^{\prime}} \alpha\left(x_{1}\right)\right\}-\int_{\lambda_{1}}^{x_{2}} \alpha(x) \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) d x \\
& \frac{d I}{d h}=\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right] \alpha(x) d x \\
& \therefore \alpha\left(x_{1}\right)=0=\alpha\left(x_{2}\right)
\end{aligned}
$$

But $\frac{d}{d h}=0$ when $h=0$ for I
to be Extremum. Hence integrand in the RHS must be zero since $\alpha(x)$ is arbitrary we must have

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{d}{\partial x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \tag{2m}
\end{equation*}
$$

This is reqirired Euler's En.
qC)

$$
f\left(x, y, y^{\prime}\right)=y^{2}+y^{\prime}+2 y e^{x}
$$

Euler's $\varepsilon n \frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$

$$
\left(2 y+2 e^{x}\right)-\frac{d}{d x}\left(2 y^{\prime}\right)=0
$$

Q.No.

$$
\begin{aligned}
& \Rightarrow y+e^{x}-y^{\prime \prime}=0 \\
& \Rightarrow y^{\prime \prime}-y=e^{x} \text { or }\left(D^{2}-1\right) y=e^{x}
\end{aligned}
$$

$$
D=\frac{d}{d x} .
$$

$A E$ is $m^{2}-1=0 \Rightarrow m= \pm 1$

$$
y_{c}(x)=c_{1} e^{x}+c_{2} e^{-x}
$$

$$
y_{p}=\frac{e^{x}}{D^{2}-1} \text { put } D=1 \text { in } f(D)
$$

$$
y_{p}=\frac{e^{x}}{1-1}=\frac{e^{x}}{0}
$$

$$
y_{p}=x \frac{e^{x}}{f^{\prime}(D)}=x \cdot \frac{e^{x}}{2 D}=\frac{x}{2} \frac{1}{1} e^{x}
$$

$$
y_{p}=\frac{x}{2} e^{x}
$$

$$
\begin{equation*}
y=y_{c}+y_{p}, y=c_{1} e^{x}+c_{2} e^{-x}+\frac{x e^{x}}{2} \tag{2n}
\end{equation*}
$$

Boa) Milne's Predictor - Corrector method
Given $\varepsilon_{\varepsilon n} 2 \frac{d^{2} y}{d x^{2}}=4 x+\frac{d y}{d x}$

$$
\frac{d^{2} y}{d x^{2}}=2 x+\frac{1}{2} \frac{d y}{d x} \text { or } y^{\prime \prime}=2 x+\frac{y^{\prime}}{2}
$$

Put $y^{\prime}=z \Rightarrow y^{\prime \prime}=z^{\prime}$

$$
\Rightarrow z^{\prime}=2 x+\frac{z}{2} \quad h=0.1
$$

x	$x_{0}=1$	$x_{1}=1.1$	$x_{2}=1.2$	$x_{3}=1.3$
y	$y_{0}=2$	$y_{1}=2.2156$	$y_{2}=2.4649$	$y_{3}=2.7514$
$y^{\prime}=z$	$z_{0}=2$	$z_{1}=2.3178$	$z_{2}=2.6725$	$z_{3}=3.0657$
$y^{\prime \prime}=z^{\prime}$	$z_{0}^{\prime}=3$	$z_{3}^{\prime}=3.3589$	$z_{2}^{\prime}=3.73625$	$z_{3}^{\prime}=4.13285$

consider Milne's Predictor formulae

$$
\begin{aligned}
& y_{4}^{(P)}=y_{0}+\frac{4 h}{3}\left(2 z_{1}-z_{2}+2 z_{3}\right) \\
& z_{4}^{(P)}=z_{0}+\frac{4 h\left(2 z_{1}^{\prime}-z_{2}^{\prime}+2 z_{3}^{\prime}\right)}{3}\left(\begin{array}{c}
2(2.3178)-2.6725+ \\
\left.\left.y_{4}^{(P)}=2+3.0657\right)\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{align*}
& y_{4}^{(P)}=3.0793 \\
& z_{4}^{(P)}=2+\frac{4}{3} 100 \\
& z_{4}^{(P)}=3.4996
\end{align*}
$$

$$
\begin{aligned}
z_{4}^{(p)}=2+\frac{4}{3}(0.1) & {[2(3.3589)-3.73625} \\
& +2(4.13285)]
\end{aligned}
$$

$$
+2(4.13285)]
$$

Consider Milne's corrector formulae

$$
\begin{aligned}
& \text { Consider } \\
& y_{4}^{(c)}=y_{2}+\frac{h}{3}\left(z_{2}+4 z_{3}+z_{4}^{(p)}\right) \\
& z_{4}^{(c)}=z_{2}+\frac{h}{3}\left(z_{2}^{\prime}+4 z_{3}^{\prime}+z_{4}^{\prime}\right)
\end{aligned}
$$

Q. No.

$$
\begin{aligned}
& \begin{array}{ll}
\begin{array}{l}
y_{4-}^{(c)}=2.4649+\frac{1}{3}(0.1)
\end{array} \\
& 2.6725+4(3.0657) \\
& +2(3.4996)]
\end{array} \\
& y_{4}^{(c)}=3.0794 . \\
& z_{4}^{\prime}=2 \overline{x_{4}}+\frac{z_{4}^{(P)}}{2}=2(1.4)+\frac{3.4996}{2} \\
& z_{4}^{\prime}=4.5498 \\
& z_{4}^{(C)}=2.6 .725+\frac{0.1}{3}[3.73625+4(4.13285) \\
& +4.5498]
\end{aligned}
$$

(C)

$$
z_{4}^{(c)}=3.4997
$$

Applying corrector formula once again for $y_{4}^{(c)}$

$$
\begin{aligned}
& y_{4}^{(c)}=2.4649+\frac{0.1}{3}[2.6725+4(3.0657)+ \\
& 2(3.4997)] \\
& y_{4}^{(c)}=3.0794
\end{aligned}
$$

Thus $y(1.4)=3.0794$
lob) Prove that geodesics of a plane are straight hines
Ans: let $y=y(x)$ be a curve joining two pts $p\left(x_{1} y_{1}\right)$ \& $Q\left(x_{2}, y_{2}\right)$ in the $X O Y$ plane. We know that the are length bet P and Q is given by

$$
s=\int_{x_{1}}^{x_{2}} \frac{d s}{d x} d x=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

ie $S=I=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(y^{1}\right)^{2}} d x$
we need to find the curve $y(x)$ such that I is minimum.

$$
\text { Let } f\left(x, y, y^{\prime}\right)=\sqrt{1+\left(y^{\prime}\right)^{2}}
$$

Euler's eqn $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$

$$
\Rightarrow 0-\frac{d}{d x}\left\{\frac{1 \times \nsim\left(y^{\prime}\right)}{\not 2 \sqrt{1+\left(y^{\prime}\right)^{2}}}\right\}=0
$$

$$
\frac{d}{d x}\left\{\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}\right\}=0
$$

$$
\frac{\sqrt{1+\left(y^{\prime}\right)^{2}} \cdot y^{\prime \prime}-y^{\prime} \cdot \frac{1}{x+\sqrt{1+\left(y^{\prime}\right)^{2}}} \cdot y^{\prime \prime}}{1+\left(y^{\prime}\right)^{2}}
$$

$$
=0 \quad \lim
$$

Q. No.

$$
\left[\begin{array}{l}
\frac{\left[1+\left(y^{\prime}\right)^{2}\right] y^{\prime \prime}-\left(y^{\prime}\right)^{2} y^{\prime \prime}}{\left(1+\left[y^{\prime}\right]^{2}\right) \cdot \sqrt{1+\left(y^{\prime}\right)^{2}}}=0 \\
{\left[1+\left(y^{\prime}\right)^{2}\right]^{\prime \prime}-\left(y^{\prime}\right)^{2} y^{\prime \prime}=0} \\
y^{\prime \prime}+\left(y^{\prime}\right)^{2} \cdot y^{\prime \prime}-\left(y^{\prime}\right)^{2} y^{\prime \prime}=0 \\
y^{\prime \prime}=0 \Rightarrow \frac{d^{2} y}{d x^{2}}=0 \quad \text { Integrating } \quad \text { wort } x \quad(p m
\end{array}\right)
$$

$\frac{d y}{d x}=c_{1}$ Integrate w.r.t x once again
$y=c_{1} x+c_{2}$ which is a straight line

Hence geodesics on a plane are straight -lines.

10c) Let $I=\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+12 x y\right] d x$

$$
f\left(x, y, y^{\prime}\right)=\left(y^{\prime}\right)^{2}+12 x y
$$

Euler's $\varepsilon_{e} n \frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$

$$
\frac{\partial f}{\partial y}=12 x \quad \frac{\partial f}{\partial y^{\prime}}=2 y^{\prime}
$$

$$
\Rightarrow 12 x-\frac{d}{d x}\left(2 y^{\prime}\right)=0 \text { ie }
$$

$$
12 x-2 y^{\prime \prime}=0 \Rightarrow+7-y^{\prime \prime}=+y^{6} 2 x
$$

$y^{\prime \prime}=6 x$ Integrating worst x twice

$$
\begin{align*}
& \frac{d y}{d x}=6 \cdot \frac{x^{2}}{x}+c_{1} \\
& y=3 \cdot \frac{x^{3}}{3}+c_{1} x+c_{2} \\
& y(x)=x^{3}+c_{1} x+c_{2} \tag{1}
\end{align*}
$$

using the given conditions

$y(0)=0 \Rightarrow y=0$ at $x=0$
$y(1)=1 \Rightarrow y=1$ at $x=1$
$y(0)=0+0+c_{2} \Rightarrow 0=c_{2}$
$y(1)=1+c_{1}+c_{2} \Rightarrow 1=1+c_{1}+0$

$$
\Rightarrow c_{1}=0
$$

substituting in ε_{2} (1)

$$
y=x^{3}+0+0 \Rightarrow y=x^{3} \text { is }
$$ received sol?

