DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Semester: III Year: 2021-2022

Course Title		Advanced C	
Total Teaching Hours	30	Teaching	
Internal AssessmentMarks	05	Hours/Week	3

COURSE LEARNING OBJECTIVES:

- 1. To learn the concept of dynamic Memory allocation
- 2. To learn concept of Command line Arguments and files
- 3. To Solve Real world problems.

Course Content (Syllabus)

MODULE-1 Dynamic memory allocation and files Dynamic Memory Allocation. Function Pointers, command line Arguments, Files: File concepts, file modes, file opening, file closing, file reading, file writing.	10 Hrs
MODULE-2	
Hands on activity Code snippets on various programming features	10 Hrs
MODULE-3 SOLVING REAL WORLD PROBLEMS (PROJECTS) Customer Billing System, Bank Management System, Quiz Game, Typing Tutor, Library Management System	10 Hrs

Computer science & Engineering

KLS Vishwarathraology, Hallyal

Institute of Tachnology, Hallyal

DEPARTMENT OF COMPUTER SCIENCE & ENGGINEERING

Syllabus

Semester: V

Year: 2021-2022

Course Title	Н	IBERNATE	
Total Teaching Hours	30	Teaching	3
Internal Assessment Marks	05	Hours/Week	

Course Learning Objectives: This course will enable students to

- 1. Create dynamic HTML content with servlets and Java Server Pages.
- 2. Make servlets and JSP work together.
- 3. Access Database with JDBC
- 4. Design and build robust and maintainable web applications.

Course Content (Syllabus)

MODULE-1	
Module 01 - Java Servlet, Java Server Pages, JDBC,	10 Hrs
Java Servlet: Servlets API, Interfaces, and Methods, Servlet Lifecycle, Configure and	10 ms
Deploy Servlet, ServletRequest, ServletResponse, ServletConfig, ServletContext,	
Servlet Scopes, Attributes, and Collaboration, Session Management, Listeners in Java	
EE, Filters in Java EE,	
JSP: JSP Lifecycle, Creating and Working with JSP Elements, Working with JSP	
Standard Action, JSTL and Custom Tag Libraries.	
JDBC: CallableStatement, ResultSet, ResultSet Meta-Data, Database Meta-Data,	
Transactions in JDBC, Connected & Disconnected Architecture (JDBCRowset,	- 12-2
CachedRowSet)	
MODULE-2	
Hibernate: Introduction to Hibernate, Introduction to Hibernate,	1077
Hibernate CRUD Operation, Hibernate Queries and Relationship, Hibernate	10Hrs
Queries and Relationships, Mapping Relationship with Hibernate.	
Hibernate Framework, Object relational Mapping (ORM) Tool, Java ORM Frameworks,	
Supported Databases, Supported Technologies, what is JPA? Advantages of Hibernate	
Framework,	
Hibernate Architecture, Elements of Hibernate Architecture	
MODULE-3	10Hrs
Hands-on Activity on the Above Topics	
Code Snippets, Analysis of Code	

Gompuler Science & Engineering KLS Vielwanathree Deshpanes Inviture of Tax hastons

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Semester: VII Year: 2021-2022

Course Title		Deep Learning	
Total Teaching Hours	30	Teaching	
Internal AssessmentMarks	05	Hours/Week	3

Course Learning Objectives:

- Understand the context of neural networks and deep learning
- Know how to use a neural network
- Have a working knowledge of neural networks and deep learning

Course Content (Syllabus)

MODULE-1 Introduction to Neural Networks Basics: Biological Neuron, Idea of Computational units, McCulloch-Pits unit and Thresholding logic, Linear Perceptron, Perceptron learning Algorithm, Linear separability, convergence theorem for perceptron learning algorithm.	10 Hrs
Feedforward Networks: Multilayer perceptron, Gradient Descent, Backpropagation, Empirical Risk minimization, regularization, autoencoders. Deep Neural Networks: Difficulty of training deep neural networks, greedy layerwise	
training. MODULE-2 Deep Neural Networks - 1 Better Training of NN: Newer optimization methods for NN, second order methods for	10 Hrs
training, saddle point problem in NN, Regularization methods. Recurrent Neural Networks: Backpropagation through time, LSTM, Gated recurrent units, Bidirectional LSTM, Bidirectional RNNs.	
Convolution Neural Networks: LeNet, AlexNet.	
MODULE-3	
Deep Learning Algorithms Generative Models: Restrictive Boltzman Machines, Introduction to MCMC and Gibbs Sampling, gradient computations in RBMs, Deep Boltzmann machines.	10 Hrs
Recent Trends: Variational Autoencoders, Generative Adverserial Networks, Mutitask deep learning, Multi-view deep learning	
Applications: Vision, NLP, Speech	

Computer Science & Engineering KLS Vishwanathrao Dashpanda

DEPARTMENT OF COMPUTER SCIENCE & ENGGINEERING **Syllabus**

Semester: IV

DELLING U	Jsing UML	

Year: 2021-2022

Course Title	OBJECT ORIENTED MODELLING Using UML		
Total Teaching Hours	30	Teaching	
Internal Assessment Marks	05	Hours/Week	3

Course Learning Objectives: This course will enable students to

- 1. To demonstrate how it contrast with previous programming approaches.
- 2. To know the characteristics are required by an OO approach.
- 3. To know how object oriented approach support multiple inheritances.
- 4. To learn state modeling is differ from class modeling.
- 5. To understand the usage of StarUML tool.

Course Content (Syllabus)

Module – 1: INTRODUCTION, MODELING CONCEPTS, CLASS MODELING What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development;. MODELING AS DESIGN TECHNIQUE: Modeling; abstraction; The three models. Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models	10 Hrs
MODULE-2 Module-2: ADVANCED CLASS MODELING, STATE MODELING ADVANCED OBJECT AND CLASS CONCEPTS; Association ends; N-ary associations; Aggregation; Multiple inheritance; Metadata; Constraints; Derived data; STATE MODELING: Events, States, Transitions and Conditions; State diagrams; ADVANCED STATE MODELING: Nested state diagrams; A sample state model; INTERACTION MODELING: Use case models; Sequence models; Activity models. Use case relationships;	10Hrs
Module-3: Modelling using StarUML StarUML: Introduction, Basic Concepts, Managing Project, Editing Elements, Formatting Diagram, Annotation Elements, Managing Extensions, User Interface, Validation Rules, Keyboard Shortcuts, TouchBar (MacBook), Customization, Working with UML Diagram, Modelling Examples with Hands on.	10Hrs

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Syllabus

Semester: VI Year: 2021-2022

Course Title	INTRODUCTION	TO PHYSICAL NETWORKI APPROACH	ING A HANDS-ON
Total Teaching Hours	30	Teaching	2
Internal Assessment Marks	05	Hours/Week	3

Course Learning Objectives: This course will enable students to

- 1. To understand basics of Computer Networks.
- 2. To work about the need to learn Networking

Course Content (Syllabus)

MODULE-1 Introduction to Network Cabling Introduction Cables, Hubs and Switches, Routers and Servers and Clients. Types of Cables, Twisted pair, coaxial and OFC. Hands on Moving Bits Across the Wire, Twisted Pair Cabling. Crimping, punching and Testing cat6 cables.	06 Hrs
MODULE-2	
Designing of Home Networks and Small LANs	10 Hrs
Network Ports and Patch Panels. Ethernet and MAC Addresses What is an IP address? Introduction to subnetting. Commands you need: ipconfig, ping and	
traceroute, nslookup, arp, setting up of servers etc.	
MODULE-3	
Practical Implementation of Cabling to design new Laboratories in KLS VDIT.	14 Hrs
CIVIL CAED LAB, NAIN Centre, Various Staff Rooms Report submission and evaluation.	
and Evaluation.	

Computer Science & Engineering
KLS Victivenathreo Deshpando
Institute of Technology, Maria A.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Semester: VIII Year: 2021-2022

Course Title	Introduction to Data Science with R Programmin		R Programming
Total Teaching Hours	30	Teaching	
Internal Assessment Marks	05	Hours/Week	3

Course Learning Objectives:

- To understand basics of R Language.
- To work with R Studio environment.
- To know the basics of data science fundamentals.

Course Content (Syllabus)

MODULE-1 INTRODUCTION TO R R Basics, Installing R, R Programming Language - Operators, Printing Values, Basic Data Types, Control Structures, Functions, Reading Data.	08 Hrs
MODULE-2 Data Science Foundations - 1 Data Cleansing - Identifying Data Types, Data Entry Errors, Missing Values, Data Visualization – Scatter plots, Bar plots and Pie charts, Creating Plots Using qplot(), Interactive Visualizations Using Shiny.	08 Hrs
MODULE-3 Data Science Foundations - 2 Exploratory Data Analysis - Summary Statistics, Getting a Sense of Data Distribution - Box Plots,	14 Hrs
Regression – Introduction, Parametric Regression Models - LR, Non Parametric Regression Models - LWR,	
Classification - Parametric Classification Models - Naive Bayes, Non parametric Classification Models - Nearest Neighbors,	
Text Mining - Common Text Preprocessing Tasks, Term Document Matrix, Text Mining Applications.	

Computer Science & Engineering KLS Vishwanathrao Deshpande Institute of Technology, Hailyaj