Third Semester B.E Degree Examination Transform Calculus, Fourier Series and Numerical Techniques (21MAT31)

TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

	b	The transverse displacement u of a point at a distance x from one end and at any time t of a vibrating string satisfies the equation $u_{t t}=25 u_{x x}$, with the boundary conditions $u(x, t)=u(5, t)=0$ and the initial conditions $u(x, 0)=\left\{\begin{array}{cc}20 x, & 0 \leq x \leq 1 \\ 5(5-x), & 1 \leq x \leq 5\end{array}\right.$ and $u_{t}(x, 0)=0$. Solve this equation numerically up to $t=5$ taking $h=1, k=0.2$.	10
Module-5			
Q. 09	a	Using Runge -Kutta method of order four, solve $\frac{d^{2} y}{d x^{2}}=y+x \frac{d y}{d x}$ for $\mathrm{x}=0.2$, Given that, $y(0)=1, y^{\prime}(0)=0$	06
	b	Find the extremals of the functional $\int_{x_{1}}^{x_{2}}\left[y^{2}+\left(y^{\prime}\right)^{2}+2 y e^{x}\right] d x$	07
	c	Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity	07
OR			
Q. 10	a	$\begin{gathered} \text { Apply Milne's method to solve } \frac{d^{2} y}{d x^{2}}=1+\frac{d y}{d x} \quad \text { at } \mathrm{x}=0.4 \text {. given that } \\ y(0)=1, y(0.1)=1.1103, y(0.2)=1.2427, y(0.3)=1.399 \\ y^{\prime}(0)=1, y^{\prime}(0.1)=1.2103, y^{\prime}(0.2)=1.4427, y^{\prime}(0.3)=1.699 \end{gathered}$	06
	b	Find the extremals of the functional $\int_{x_{1}}^{x_{2}} \frac{\left(y^{\prime}\right)^{2}}{x^{3}} d x$	07
	c	Find the curve on which the functional $\int_{0}^{\pi / 2}\left[\left(y^{\prime}\right)^{2}+12 x y\right] d x$ with $y(0)=0$ and $y(\pi / 2)=0$ can be extremised	07

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome				
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome
Q. 1	(a)	L1	CO 01	PO 01
	(b)	L2	CO 01	PO 02
	(c)	L2	CO 01	PO 02
Q. 2	(a)	L2	CO 01	PO 02
	(b)	L2	CO 01	PO 02
	(c)	L2	CO 01	PO 02
Q. 3	(a)	L2	CO 02	PO 02
	(b)	L2	CO 02	PO 02
	(c)	L3	CO 02	PO 02
Q. 4	(a)	L2	CO 02	PO 02
	(b)	L2	CO 02	PO 02
	(c)	L2	CO 02	PO 02
Q. 5	(a)	L2	CO 03	PO 02
	(b)	L2	CO 03	PO 02
	(c)	L2	CO 03	PO 02
Q. 6	(a)	L2	CO 03	PO 02

Subject with Sub. Code: Transform Calculus, Fourier Series and Numerical Techniques (21MAT31) Name of Faculty: Dr. Lat Lamani

$$
\begin{aligned}
& \therefore L[f(t)]=\frac{1}{1-e^{-a s}}\left[\frac{e^{-s t}}{-s}\right]_{0}^{a / 2}-\frac{1}{1-e^{-a s}}\left[\frac{e^{-s t}}{-s}\right]_{\left.a\right|_{2}}^{a} \\
& =\frac{1}{1-e^{-a s}}\left[\frac{e^{-a s / 2}-1}{-s}-\frac{e^{-a s}-e^{-a s / 2}}{-s}\right] \\
& =\frac{1}{1-e^{-a s}}\left[\frac{1-e^{-a s / 2}-e^{-a s / 2}+e^{-a s}}{s}\right] \\
& =\frac{1}{1-e^{-a s}}\left[\frac{1-2 e^{-a s / 2}+e^{-a s}}{s}\right] \\
& =\frac{1}{1-e^{-a s}}\left[\frac{1-2 e^{-a s / 2}+\left(e^{-a s / 2}\right)^{2}}{s}\right] \\
& =\frac{1}{1-\left(e^{-a s / 2}\right)^{2}}\left[\frac{\left(1-e^{-a s / 2}\right)^{2}}{s}\right] \\
& =\frac{1}{\left(1-e^{-a s / 2}\right)\left(1+e^{-a s / 2}\right)}\left[\frac{\left(1-e^{-a s / 2}\right)^{x}}{s}\right] \\
& \therefore L[f(t)]=\frac{1}{s}\left[\frac{1-e^{-a s / 2}}{1+e^{-a s / 2}}\right] \\
& \text { Multiplying and Dividing RHS by } e^{\text {as/4, we get }} \\
& L[f(t)]=\frac{1}{s}\left[\frac{e^{a s / 4}-e^{-a s / 4}}{e^{a s / 4}+e^{a s / 4}}\right] \\
& \therefore L[f(t)]=\frac{1}{s} \tanh \left(\frac{a s}{4}\right) \quad\left[\because \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right]
\end{aligned}
$$

(c) Let $\bar{f}(s)=\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}$

Now, $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\frac{1}{s^{2}+1} \cdot \frac{1}{s^{2}+9}$
ie $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\bar{f}(s) \cdot \bar{g}(s)$

Taking inverse Laplace transforms on both sides,

$$
\begin{equation*}
L^{-1}\left[\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right]=L^{-1}[\bar{f}(s) \cdot \bar{g}(s)] \tag{1}
\end{equation*}
$$

Now, $\bar{f}(s)=\frac{1}{s^{2}+1}$ and $\bar{g}(s)=\frac{1}{s^{2}+9}$
ie $f(t)=\sin t$ and $g(t)=\frac{\sin 3 t}{3}$
ie $f(u)=\sin u$ and $g(t-u)=\frac{\sin (3 t-3 u)}{3}$
By Convolution theorem, we have

$$
\int_{u=0}^{t} f(t) \cdot g(t-u) d u=L^{-1}[\bar{f}(s) \cdot \bar{g}(s)]
$$

ie $L^{-1}\left[\frac{1}{\left(s^{2}+1\right)} \cdot \frac{1}{\left(s^{2}+9\right)}\right]=\int_{u=0}^{t} \sin u \cdot \frac{\sin (3 t-3 u)}{3} \cdot d u$

$$
=\frac{1}{3} \int_{u=0}^{t} \sin u \cdot \sin (3 t-3 u) \cdot d u
$$

$$
=\frac{1}{3} \int_{u=0}^{t}\left[\frac{\cos (u-3 t+3 u)-\cos (u+3 t-3 u)}{2}\right]
$$

$=\frac{1}{3} \int_{u=0}^{t}\left[\frac{\cos (4 u-3 t)-\cos (3 t-2 u)}{2}\right] d u$

$$
=\frac{1}{6}\left[\frac{\sin (4 u-3 t)}{4}-\frac{\sin (3 t-2 u)}{-2}\right]_{u=0}^{t}
$$

$$
=\frac{1}{24}[\sin (44-3 t)+2 \sin (3 t-2 u)]_{u=0}^{t}
$$

Q.No.

$$
\therefore L^{-1}\left[\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right]=\frac{1}{24}[\sin t+2 \sin t+\sin 3 t-2 \sin 3 t]
$$

$$
\text { ie } L^{-1}\left[\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right]=\frac{1}{24}[3 \sin t-\sin 3 t]
$$

9.02
(a)

$$
\begin{aligned}
& \text { Given: } f(t)=\left\{\begin{array}{l}
\cos t, 0 \leq t \leq \pi \\
\cos 2 t, \pi \leq t \leq 2 \pi \\
\cos 3 t, t \geqslant 2 \pi
\end{array}\right. \\
& \therefore f(t)=\cos t+(\cos 2 t-\cos t) u(t-\pi)+(\cos 3 t-\cos 2 t) u(t-2 \pi) \\
& \text { ie } L[f(t)]=L[\cos t]+L[(\cos 2 t-\cos t) u(t-\pi)] \\
& +L[(\cos 3 t-\cos 2 t) u(t-2 \pi)]-(1)
\end{aligned}
$$

Let $F(t-\pi)=\cos 2 t-\cos t \quad ; \mathcal{G}(t-2 \pi)=\cos 3 t-\cos 2 t$

$$
\therefore F(t)=\cos 2(t+\pi)-\cos (t+\pi) ; G_{1}(t)=\cos 3(t+2 \pi)-\cos 2(t+2 \pi)
$$

ie $F(t)=\cos 2 t+\cos t$

$$
j G(t)=\cos 3 t-\cos 2 t
$$

ie $\bar{F}(s)=\frac{s}{s^{2}+4}+\frac{s}{s^{2}+1}$

$$
\bar{G}(s)=\frac{s}{s^{2}+9}-\frac{s}{s^{2}+4}
$$

(IM)

WKT, $L[F(t-\pi) u(t-\pi)]=e^{-\pi s} F(s)$
and $L[\xi(t-2 \pi) u(t-2 \pi)]=e^{-2 \pi s} \epsilon_{\varphi}(s)$
ie $L[(\cos 2 t-\cos t) u(t-\pi)]=e^{-\pi s}\left[\frac{s}{s^{2}+4}+\frac{s}{s^{2}+1}\right]$
and $L[(\cos 3 t-\cos 2 t) \cup(t-2 \pi)]=e^{-2 \pi s}\left[\frac{s}{s^{2}+9}-\frac{s}{s^{2}+4}\right]$.
\therefore From (1),

$$
L[f(t)]=\frac{s}{s^{2}+1}+e^{-\pi s}\left[\frac{s}{s^{2}+4}+\frac{s}{s^{2}+1}\right]+e^{-2 \pi s}\left[\frac{s}{s^{2}+9}-\frac{s}{s^{2}+4}\right](1 M)
$$

ie $L[f(t)]=\frac{s}{s^{2}+1}+s e^{-\pi s}\left[\frac{2 s^{2}+5}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right]+e^{-2 \pi s}\left[\frac{5 s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right] \frac{(1 M)}{(6 M)}$
(b) To find: $L^{-1}\left[\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right]$
$\rightarrow \frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}=\frac{2 s^{2}-6 s+5}{(s-1)\left(s^{2}-5 s+6\right)}=\frac{2 s^{2}-6 s+5}{(s-1)(s-2)(s-3)}$
Now, $\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}=\frac{A}{s-1}+\frac{B}{s-2}+\frac{c}{s-3}$
ie $\quad 2 s^{2}-6 s+5=A(s-2)(s-3)+B(s-1)(s-3)+c(s-1)(s-2)$
Put $s=1$,
Put $s=3$,

$$
\begin{array}{lll}
\begin{array}{ll}
1=A(-1)(-2) & 1=B(1)(-1) \\
A=\frac{1}{2} & B=-1 \\
& \\
s^{3}-6 s^{2}+11 s-6 & \\
& \\
2(s-1) & \frac{1}{2} \\
s-2 & \frac{5}{2(s-3)}
\end{array}
\end{array}
$$

ie $L^{-1}\left[\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right]=\frac{e^{t}}{2}-e^{2 t}+\frac{5 e^{3 t}}{2}$
(c) Given: $\frac{d^{2} x}{d t^{2}}-\frac{2 d x}{d t}+x=e^{t}$ with $x(0)=2$ and $x^{\prime}(0)=-1$.

$$
\text { ie } x^{\prime \prime}(t)-2 x^{\prime}(t)+x(t)=e^{t}
$$

Taking Laplace transform on both sides,

$$
L\left[x^{\prime \prime}(t)\right]-2 L\left[x^{\prime}(t)\right]+L[x(t)]=L\left[e^{t}\right]
$$

Q. No.

Solution and Scheme
ie $s^{2} L[x(t)]-s x(0)-x^{\prime}(0)-2\{s L[x(t)]-x(0)]+L[x(t)]=\frac{1}{s-1}$
ie $s^{2} L[x(t)]-2 s+1-2 s L[x(t)]+4+L[x(t)]=\frac{1}{s-1}$ ie $L[x(t)]\left\{s^{2}-2 s+1\right\}=\frac{1}{s-1}+2 s-5$
ie $L[x(t)](s-1)^{2}=\frac{1}{s-1}+2 s-5$
ie $L[x(t)]=\frac{1}{(s-1)^{3}}+\frac{2 s}{(s-1)^{2}}-\frac{5}{(s-1)^{2}}$

$$
\text { ie } L[x(t)]=\frac{1}{(s-1)^{3}}+2\left[\frac{(s-1)+1}{(s-1)^{2}}\right]-\frac{5}{(s-1)^{2}}
$$

ie $L[x(t)]=\frac{1}{(s-1)^{3}}+2\left[\frac{(s-1)}{(s-1)^{2}}+\frac{1}{(s-1)^{2}}\right]-\frac{5}{(s-1)^{2}}$

$$
\begin{aligned}
& \text { ie } L[x(t)]=\frac{1}{(s-1)^{3}}+2\left[\frac{1}{(s-1)}+\frac{1}{(s-1)^{2}}\right]-\frac{5}{(s-1)^{2}} \\
& \therefore \therefore x(t)=L^{-1}\left[\frac{1}{(s-1)^{3}}\right]+2 L^{-1}\left[\frac{1}{s-1}\right]+2 L^{-1}\left[\frac{1}{(s-1)^{2}}\right]-5 L^{-1}\left[\frac{1}{(s-1)^{2}}\right] \\
&=L^{-1}\left[\frac{1}{(s-1)^{3}}\right]+2 L^{-1}\left[\frac{1}{s-1}\right]-3 L^{-1}\left[\frac{1}{(s-1)^{2}}\right] \\
&=e^{t} L^{-1}\left[\frac{1}{s^{3}}\right]+2 e^{t} L^{-1}\left[\frac{1}{s}\right]-3 e^{t} L^{-1}\left[\frac{1}{s^{2}}\right] \\
&=\frac{e^{t} t^{2}}{2}+2 e^{t}-3 t e^{t} \\
&=e^{t}\left[\frac{t^{2}}{2}-3 t+2\right] \\
&(2 M) \\
& \therefore x(t)=\frac{e^{t}}{2}\left[t^{2}-6 t+4\right]
\end{aligned}
$$

(a) The fourier series of $f(x)$ in $-\pi \leq x \leq \pi$ is given by:

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x \tag{1}
\end{equation*}
$$

Given: $f(x)=x^{2}$

$$
\begin{aligned}
& \therefore f(-x)=(-x)^{2}=x^{2}=f(x) \\
& \text { ie } f(-x)=f(x)
\end{aligned}
$$

Hence $f(x)$ is even and the refore $b_{n}=0$.
\therefore Equation (1) becomes:

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{2}
\end{equation*}
$$

Where, $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$

$$
\begin{align*}
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x \\
& =\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\frac{\pi^{3}}{3}\right] \\
\therefore a_{0} & =\frac{2 \pi^{2}}{3} \\
\text { ie } \frac{a_{0}}{2} & =\frac{\pi^{2}}{3} \tag{3}
\end{align*}
$$

Now, $a_{n}=\frac{2}{\pi} \int_{0}^{\pi_{f}} f(x) \cos n x d x$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \\
& =\frac{2}{\pi}\left[x^{2}\left(\frac{\sin n x}{n}\right)-(2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\frac{2 \pi(-1)^{n}}{n^{2}}\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore a_{n}=\frac{4(-1)^{n}}{n^{2}} \tag{3}
\end{equation*}
$$

ie $a_{n}=4\left[\frac{(-1)^{n}}{n^{2}}\right]$
Substituting (3) and (4) in (1), we get

$$
f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x
$$

is the required Fourier series of $f(x)=x^{2}$ in $-\pi \leq x \leq \pi$
(b) The half range cosine series for $f(x)$ in $(0, \pi)$ is given by:

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{1}
\end{equation*}
$$

Where,

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin x d x \\
& =\frac{2}{\pi}[x(-\cos x)-(1)(-\sin x)]_{0}^{\pi} \\
& =\frac{2}{\pi}[-\pi(-1)] \\
a_{0} & =2(1)
\end{aligned}
$$

$$
\begin{equation*}
\text { ie } \frac{a_{0}}{2}=1 \tag{2}
\end{equation*}
$$

Now, $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x\left\{\frac{\sin (1+n) x+\sin (1-n)}{2}\right\} d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x\{\sin (1+n) x+\sin (1-n) x\} d x
\end{aligned}
$$

Q.No.

$$
\begin{aligned}
& \text { Solution and Scheme } \\
& \therefore a_{n}=\frac{1}{\pi} \int_{0}^{\pi} x\{\sin (n+1) x-\sin (n-1) x\} d x \\
&=\frac{1}{\pi}\left[\frac{-\cos (n+1) x}{n+1}+\frac{\cos (n-1) x}{n-1}\right]_{0}^{\pi} \\
&=\frac{1}{\pi}\left[\frac{-(-1)^{n+1}}{n+1}+\frac{(-1)^{n-1}}{n-1}+\frac{1}{n+1}-\frac{1}{n-1}\right] \\
&=\frac{1}{\pi}\left[\frac{(-1)(-1)^{n}(-1)}{n+1}+\frac{(-1)^{n-1}}{n-1}+\frac{n-1-n-1}{n^{2}-1}\right] \\
&=\frac{1}{\pi}\left[\frac{(n-1)(-1)^{n}+(-1)^{n}(-1)^{-1}(n+1)-2}{n^{2}-1}\right] \\
&=\frac{1}{\pi}\left[\frac{n(-1)^{n}-(-1)^{n}-(-1)^{n} n-(-1)^{n}-2}{n^{2}-1}\right] \\
&=\frac{1}{\pi}\left[\frac{-2(-1)^{n}-2}{n^{2}-1}\right] \\
&=\frac{1}{\pi}\left[\frac{2(-1)^{n+1}-1}{n^{2}-1}\right] \\
& \therefore a_{n}=\frac{2}{\pi}\left[\frac{(-1)^{n+1}-1}{n^{2}-1}\right], n \neq 1-(3)
\end{aligned}
$$

For $n=1, \quad a_{1}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos x d x$

$$
=\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos x d x
$$

$$
=\frac{2}{\pi} \int_{0}^{\pi} x\left\{\frac{\sin 2 x}{2}\right\} d x
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi} x \sin 2 x d x
$$

$=\frac{1}{\pi}\left[x\left(\frac{-\cos 2 x}{2}\right)-(1)\left[\frac{-\sin 2 x}{4}\right)\right]_{0}^{\pi}$

$$
=\frac{1}{\pi}\left[\pi\left(\frac{-1}{2}\right)\right]
$$

$$
\therefore a_{1}=\frac{-1}{2}-(4)
$$

Now, $a_{0}=\frac{2}{N} \sum A=\frac{1}{3}(4.5)=1.5 ; \frac{a_{0}}{2}=0.75$

$$
\begin{aligned}
& a_{1}=\frac{2}{N} \sum A \cos x=\frac{1}{3}(1.12)=0.3733 \\
& b_{1}=\frac{2}{N} \sum A \sin x=\frac{1}{3}(3.01368)=1.00456
\end{aligned}
$$

The required Fourier series upto the first harmonics is given by:

$$
A=0.75+(0.3733 \cos x+1.00456 \sin x)
$$

The direct current part of the variable current is the Constant term in the Fourier series being 0.75 .
Amplitude of first harmonic $=\sqrt{a_{1}^{2}+b_{i}^{2}}=1.072$.
9.04
(a) Here $(0,2 l)=(0,3)$ ie $2 l=3$ or $l=3 / 2$

The fourier series of $f(x)$ having period $(0,2 l)$ is given bys

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right)
$$

ie $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 n \pi x}{3}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 n \pi x}{3}\right)(1 M)$

$$
\begin{aligned}
& {[\because \ell=} \\
& =3 / 2]
\end{aligned}
$$

Where, $a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x$

$$
=\frac{2}{3} \int_{0}^{3}\left(2 x-x^{2}\right) d x \quad[\because l=3 / 2]
$$

Now, $b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x$

$$
\begin{aligned}
& \text { ie } b_{n}= \frac{2}{3} \int_{0}^{3}\left(2 x-x^{2}\right) \sin \left(\frac{2 n \pi x}{3}\right) d x \quad\left[\because l=\frac{3}{2}\right] \\
&= \frac{2}{3}\left[\left(2 x-x^{2}\right)\left\{-\cos \left(\frac{2 n \pi x}{3}\right)\right\}\left(\frac{3}{2 n \pi}\right)\right. \\
&-(2-2 x)\left\{-\sin \left(\frac{2 n \pi x}{3}\right)\right\}\left(\frac{9}{4 n^{2} \pi^{2}}\right) \\
&\left.+(-2)\left\{\cos \left(\frac{2 n \pi x}{3}\right)\right\}\left(\frac{27}{8 n^{3} \pi^{3}}\right)\right]_{0}^{3} \\
&= \frac{2}{3}\left[(6-9)(-1)\left(\frac{3}{2 n \pi}\right)-2(1)\left(\frac{27}{8 n^{3} \pi^{3}}\right)+2\left(\frac{27}{8 n^{3} \pi^{3}}\right)\right] \\
&= \frac{2}{3}\left[3\left(\frac{3}{2 n \pi}\right)\right] \\
& \therefore b_{n}=\frac{3}{n \pi} \frac{2}{3}[4)
\end{aligned}
$$

Substituting (2), (3) and (4) in (1), we get

$$
f(x)=\frac{-9}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{2 n \pi x}{3}\right)+\frac{3}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{2 n \pi x}{3}\right)
$$

is the required Fourier series of the given function $f(x)=2 x-x^{2}$ in $(0,3)$.
(b) The half-range sine series of $f(x)$ in $(0, l)$ is given by

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \tag{1}
\end{equation*}
$$

Q.No.	Solution and Scheme
9.05	
(a)	Complex Fourier transform of $f(x)$ is given by:

$$
F(u)=\int_{x=-\infty}^{\infty} f(x) e^{i u x} d x
$$

ie $F(u)=\int_{x=-1}^{1} 1 \cdot e^{i u x} d x$, since $f(x)= \begin{cases}1 & \text { for }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
F(u) & =\left[\frac{e^{i u x}}{i u}\right]_{x=-1}^{1} \\
& =\frac{1}{i u}\left[e^{i u}-e^{-i u}\right] \\
& =\frac{1}{i u}[\{\cos u+i \sin u\}-\{\cos u-i \sin u\}] \\
& =\frac{1}{i u}(2 i \sin u) \\
\therefore F(u) & =\frac{2 \sin u}{u}
\end{aligned}
$$

Next, to evaluate: $\int_{0}^{\infty} \frac{\sin x}{x} d x$
We have, $F(u)=\frac{2 \sin u}{u}$
Inverse Fourier transform is: $\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{-i u x} d x=f(x)$ ie $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \sin u}{u} e^{-i u x} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin u}{u} e^{-i u x} d u(I M)$
Now, let us put $x=0$.
Since $x=0$ is the point of continuity of $f(x)$, the value

$$
(I M)
$$

(c)
$\begin{aligned} \text { (i) } Z_{T}\left[(n+1)^{2}\right] & =Z_{T}\left[n^{2}+2 n+1\right] \\ \text { ie } Z_{T}\left[(n+1)^{2}\right] & =Z_{T}\left(n^{2}\right)+2 Z_{T}(n)+Z_{T}(1)\end{aligned}$
WIN, $Z_{T}\left(n^{2}\right)=\frac{z^{2}+z}{(z-1)^{3}}, Z_{T}(n)=\frac{z}{(z-1)^{2}}, Z_{T}(1)=\frac{z}{z-1}$
$\therefore z_{+}\left[(n+1)^{2}\right]=\frac{z^{2}+z}{(z-1)^{3}}+\frac{2 z}{(z-1)^{2}}+\frac{z}{z-1}$
$=\frac{z^{2}+z+2 z(z-1)+z(z-1)^{2}}{(z-1)^{3}}$
$=\frac{z^{2}+x+2 z^{2}-2 z+z^{3}-2 z^{2}+x}{(z-1)^{3}}$
$=\frac{z^{3}+z^{2}}{(z-1)^{3}}$
$\therefore Z_{T}\left[(n+1)^{3}\right]=\frac{z^{2}(z+1)}{(z-1)^{3}}$
(ii) Let $u_{n}=\sin (3 n+5)=\sin 3 n \cos 5+\cos 3 n \sin 5$

$$
\therefore Z_{T}(u n)=\cos 5 \cdot Z_{T}[\sin 3 n]+\sin 5 \cdot Z_{T}[\cos 3 n]
$$

Consider, $e^{i(3 n)}=\left(e^{3 i)^{n}}=k^{n}(\right.$ say $)$ where $k=e^{3 i}$

$$
W k T, Z\left[k^{n}\right]=\frac{z}{z-k}
$$

$$
\text { ie } \begin{aligned}
z\left(e^{3 i n}\right) & =\frac{z}{z-e^{3 i}}=\frac{z}{(z-\cos 3)-i \sin ^{3}} \\
& =\frac{z[(z-\cos 3)+i \sin 3]}{(z-\cos 3)^{2}+\sin ^{2} 3}
\end{aligned}
$$

Q.No.

Hence, $\frac{\bar{u}(z)}{z}=\frac{1}{6} \cdot \frac{1}{z+2}+\frac{11}{6} \cdot \frac{1}{z-6}$
or $\bar{u}(z)=\frac{1}{6}\left[\frac{z}{z+2}\right]+\frac{11}{6}\left[\frac{z}{z-6}\right]$

$$
\therefore z_{T}^{-1}[\bar{u}(z)]=\frac{1}{6} z_{T}^{-1}\left[\frac{z}{z+2}\right]+\frac{11}{6} z_{T}^{-1}\left[\frac{z}{z-4}\right]
$$

$$
\text { ie } z_{-}^{-1}(\bar{u}(z))=\frac{1}{6}\left[(-2)^{n}+11(4)^{n}\right]
$$

(c) Given: $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n} ; \quad u_{0}=0, u_{1}=1$.

Taking z-transforms on both sides of the given equation, we have

$$
\begin{aligned}
& z_{T}\left[u_{n+2}\right]+4 z_{T}\left[u_{n}+1\right]+3 z_{T}\left[u_{n}\right]=z_{T}\left[3^{n}\right] \\
& \text { ie } z^{2}\left[\bar{u}(z)-u_{0}-u_{1} z^{-1}\right]+4 z\left[\bar{u}(z)-u_{0}\right]+3 \bar{u}(z)=\frac{z}{z-3} \\
& \text { ie }\left(z^{2}+4 z+3\right) \bar{u}(z)-z=\frac{z}{z-3} \\
& \text { ie }\left(z^{2}+4 z+3\right) \bar{u}(z)=\frac{z}{z-3}+z \\
& \text { ie }\left(z^{2}+4 z+3\right) \bar{u}(z)=\frac{z+z(z-3)}{(z-3)} \\
& \therefore \frac{u}{}(z)=\frac{z+z^{2}-3 z}{(z-3)\left(z^{2}+4 z+3\right)} \\
& \text { ie } \bar{u}(z)=\frac{z^{2}+z-3 z}{(z-3)(z+3)(z+1)} \\
& \text { ie } \frac{u(z)}{z}=\frac{z+1-3}{(z-3)(z+3)(z+1)}=\frac{z-2}{(z-3)(z+3)(z+1)}
\end{aligned} \text { (lM) }
$$

Q.No.

Now let $\frac{z-2}{(z-3)(z+3)(z+1)}=\frac{A}{z-3}+\frac{B}{z+3}+\frac{C}{z+1}$
or $z-2=A(z+3)(z+1)+B(z-3)(z+1)+C(z-3)(z+3)$
Put $z=3 \Rightarrow 1=A(6)(4) \Rightarrow A=\frac{1}{24}$

Put $z=-3 \Rightarrow-5=B(-6)(2) \Rightarrow B=\frac{-5}{12}$

Put $z=-1 \Rightarrow-3=C(-4)(2) \Longrightarrow C=\frac{3}{8}$

$$
\therefore \frac{\bar{u}(z)}{z}=\frac{1}{24(z-3)}-\frac{5}{12(z+3)}+\frac{3}{8(z+1)}
$$

or $\bar{u}(z)=\frac{1}{24}\left[\frac{z}{z-3}\right]-\frac{5}{12}\left[\frac{z}{z+3}\right]+\frac{3}{8}\left[\frac{z}{z+1}\right]$

$$
\therefore z_{T}^{-1}[\bar{u}(z)]=\frac{1}{24} z_{T}^{-1}\left[\frac{z}{z-3}\right]-\frac{5}{12} z_{T}^{-1}\left[\frac{z}{z+3}\right]+\frac{3}{8} z_{T}^{-1}\left[\frac{z}{z+1}\right]
$$

ie $u_{n}=\frac{1}{24}(3)^{n}-\frac{5}{12}(-3)^{n}+\frac{3}{8}(-1)^{n}$

$$
=\frac{(3)^{n}-10(-3)^{n}+9(-1)^{n}}{24}
$$

$$
\therefore u_{n}=\frac{1}{24}\left[9(-1)^{n}-10(-3)^{n}+(3)^{n}\right]
$$

$Q .07$
(a) (i) Given: $u_{x x}+4 u_{x y}+4 u_{y y}-u_{x}+2 u_{y}=0$

Comparing (1) with

$$
A(x, y) u_{x x}+B(x, y) u_{x y}+C(x, y) u_{y y}+F\left(x, y, u, u_{x}, u_{y}\right)=0,(2)(2 M)
$$ we get $A=1, B=4, C=4$

$$
\therefore B^{2}-4 A C=(4)^{2}-(4 \times 1 \times 4)=0
$$

\therefore The equation is parabolic.
(ii) $x^{2} u_{x x}+\left(1-y^{2}\right) u_{y y}=0,-1<y<1$

Comparing given equation with (2), we get

$$
\begin{aligned}
& A=x^{2}, B=0, C=1-y^{2} \\
\therefore & B^{2}-4 A C=0-4\left(x^{2}\right)\left(1-y^{2}\right)=4 x^{2}\left(y^{2}-1\right)
\end{aligned}
$$

- For all ' x ' between $-\infty$ and ∞, x^{2} is positive

For all ' y ' between -1 and $1, y^{2}<1$

$$
\therefore B^{2}-4 A C<0
$$

Hence the equation is elliptic
(iii) $\left(1+x^{2}\right) u_{x x}+\left[5+2 x^{2}\right) 4 x t+\left(4+x^{2}\right) u_{t t}=0$.

Comparing given equation with (2), we get

$$
\begin{aligned}
& A=\left(1+x^{2}\right), B=\left(5+2 x^{2}\right), C=\left(4+x^{2}\right) \\
& \therefore B^{2}-4 A C=\left(5+2 x^{2}\right)^{2}-4\left(1+x^{2}\right)\left(4+x^{2}\right) \\
&= 25+4 x^{4}+20 x^{2}-16-4 x^{2}-16 x^{2}-4 x^{4} \\
& \therefore B^{2}-4 A C=9>0
\end{aligned}
$$

Hence the equation is hyperbolic.

$$
\text { (iv) } y^{2} u_{x x}-2 y u_{x y}+u_{y y}-u_{y}-8 y=0
$$

Comparing given equation with (2), we get

$$
\begin{gathered}
A=y^{2}, B=-2 y, C=1 \\
\therefore B^{2}-4 A C=(-2 y)^{2}-4\left(y^{2}\right)(1)=0
\end{gathered}
$$

\therefore The equation is parabolic.

| Q.No. Solution and Scheme |
| :--- | :--- |

(b) Here, $c^{2}=4, h=1$ and $k=\frac{1}{8}$. Then $\alpha=\frac{c^{2} k}{h^{2}}=\frac{1}{2}$ \therefore We have Bendre-Schmidt's recurrence relation

$$
\begin{equation*}
u_{i, j+1}=\frac{1}{2}\left(u_{i-1, j}+u_{i+1, j}\right) \tag{1}
\end{equation*}
$$

\qquad
$\therefore u_{0, i}=0$ and $u_{8, j}=0$ for all values of ' j 'ie the enteries in the first and last column are zero.

Since $u(x, 0)=4 x-\frac{x^{2}}{2}$,

$$
\begin{aligned}
U_{i, 0}= & 4 i-\frac{i^{2}}{2} \\
= & 0,3.5,6,7.5,8,7.5,6,3.5 \text { for } i=0,1,2,3,4,5,6,7 \\
& \text { at } t=0 .
\end{aligned}
$$

These are the enteries of the first row.
Taking $j=0$ in (1), we have $u_{i, 1}=\frac{1}{2}\left(u_{i-1,0}+u_{i+1}, 0\right)$
Taking $i=1,2,3, \ldots, 7$ successively, we get

$$
\begin{aligned}
& u_{1,1}=\frac{1}{2}\left(u_{0,0}+u_{2,0}\right)=\frac{1}{2}(0.6)=3 \\
& u_{2,1}=\frac{1}{2}\left(u_{1,0}+u_{3,0}\right)=\frac{1}{2}(3.5+7.5)=5.5 \\
& u_{3,1}=\frac{1}{2}\left(u_{2,0}+u_{4,0}\right)=\frac{1}{2}(6+8)=7 \\
& u_{4,1}=7.5, u_{5,1}=7, u_{6,1}=5.5, u_{7,1}=3 .
\end{aligned}
$$

These are the enteries in the second row.
Putting $j=1$ in (i), the enteries of the third row are given by:

$$
u_{1,2}=\frac{1}{2}\left(u_{i-1,1}+u_{i+1}, 1\right)
$$

Similarly putting $j=2,3,4$ successively in (i), the enteries of the fourth, fifth and sixth rows are obtained $(3 M)$ Hence the values of $u_{i, j}$ are as given in the following table.

Q. NO. Q.No.

Solution and Scheme
Marks

Solution and Scheme									
$j i$	0	1	2	3	4	5	6	7	8
0	0	3.5	6	7.5	8	7.5	6	3.5	0
1	0	3	5.5	7	7.5	7	5.5	3	0
2	0	2.75	5	6.5	7	6.5	5	2.75	0
3	0	2.5	4.625	6	6.5	6	4.625	2.5	0
4	0	2.3125	4.25	5.5625	6	5.5625	4.25	2.3125	0
5	0	2.125	3.9375	5.125	5.5625	5.125	3.9375	2.125	0

(a) Here, $c^{2}=1, h=1 / 3, k=1 / 36$

So that $\alpha=\frac{k c^{2}}{h^{2}}=\frac{1}{4}$.
Also, $u_{1,0}=\sin (\pi / 3)=\sqrt{3} / 2$

$$
u_{2,0}=\sin (2 \pi / 3)=\sqrt{3} / 2
$$

And all boundary values are zero as shown in the figure.
By Schmidt's formula, we have

$$
\begin{equation*}
u_{i, j+1}=\kappa u_{i-1, j}+(1-2 x) u_{i, j}+\kappa u_{i+1, j} \tag{IM}
\end{equation*}
$$

becomes $u_{i, j+1}=\frac{1}{4}\left[u_{i-1, j}+2 u_{i, j}+u_{i+1, j}\right]$
For $i=1,2 ; j=0$:

$$
\begin{aligned}
& u_{1,1}=\frac{1}{4}\left[u_{0,0}+2 u_{1,0}+u_{2,0}\right]=\frac{1}{4}\left[0+2\left(\frac{\sqrt{3}}{2}\right)+\frac{\sqrt{3}}{2}\right]=0.65 \\
& u_{2,1}=\frac{1}{2}\left[u_{1,0}+2 u_{2,0}+u_{3}, 0\right]=\frac{1}{4}\left[\frac{\sqrt{3}}{2}+2 \times \frac{\sqrt{3}}{2}+0\right]=0.65
\end{aligned}
$$

For $i=1,2 ; j=1$:

$$
\begin{aligned}
& u_{1,2}=\frac{1}{4}\left[u_{0,1}+2 u_{1,1}+u_{2,1}\right]=0.49 \\
& u_{2,2}=\frac{1}{4}\left[u_{1,1}+2 u_{2,1}+u_{3,1}\right]=0.49
\end{aligned}
$$

$u_{2,2}=u_{1,1}+u_{3,1}-u_{2,0}=7.5+10-15=2.5$
$u_{3,2}=u_{2,1}+u_{4,1}-u_{3,0}=15+5-10=10$
$u_{4,2}=u_{3,1}+u_{5,1}-u_{4,0}=10+0-5=5$
These are the entries of the third row.
Putting $j=2$ in $(1), u_{i, 3}=u_{i-1,2}+u_{i+1,2}-u_{i, 1}$
Taking $i=1,2,3,4$ respectively, we obtain
$u_{1,3}=u_{0,2}+u_{2,2}-u_{1,1}=0+10-15=-5$
$u_{2,3}=4_{1,2}+u_{3,2}-u_{2,1}=-5+10-15=-10$
$u_{3,3}=u_{2,2}+u_{4,2}-u_{3,1}=2.5+5-10=-2.5$
$u_{4,3}=U_{3,2}+u_{5,2}-u_{4,1}=10+0-5=5$
These are the entries of the fourth row.
Now the equation of the vibrating string of length ' l ' is $u_{t t}=c^{2} u_{x x}$.
\therefore Its period of vibration $=\frac{2 l}{c}=\frac{2 \times 25}{5}=10 \mathrm{sec}$.
This shows that we have to compute $u(x, t)$ upto $t=5$. Putting $j=3$ in (1), $u_{j, 4}=u_{i-1,4}+u_{i+1,4}-u_{i, 3}$
Taking $i=1,2,3,4$ respectively, we obtain

$$
u_{1,4}=u_{0,3}+u_{2,3}-u_{1,2}=0+(-10)-(-5)=-10+5=-5
$$

$u_{2,4}=u_{1,3}+u_{3,3}-u_{2,2}=-5+5-10=-10$
$U_{3,4}=U_{2,3}+U_{4}, 3-U_{3,2}=-10+5-10=-15$
$U_{4,4}=U_{3,3}+U_{5,4}-U_{4}, 2=-2.5+0-5=-7.5$
These are the entries of the fifth row.
The values of $40, j$ are as shown in the following table. [The entries of the sixth row are obtained $111^{r y}$ as above]

j	0	1	2	3	4	5
0	0	20	15	10	5	0
1	0	7.5	15	10	5	0
2	0	-5	2.5	10	5	0
3	0	-5	-10	-2.5	5	0
4	0	-5	-10	-15	-7.5	0
5	0	-5	-10	-15	-20	0

Q.No.
9.09

(a)

Given: $\frac{d^{2} y}{d x^{2}}=y+\frac{x d y}{d x} ; y(0)=1, y^{\prime}(0)=0$.

$$
\begin{equation*}
\text { ie } \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-y=0 ; y(0)=1, y^{\prime}(0)=0 \tag{1}
\end{equation*}
$$

Here, $x_{0}=0, y_{0}=1, y_{0}^{1}=0, x_{1}=0.2$
Step length $h=x_{1}-x_{0}=0.2-0=0.2$
Put $\frac{d y}{d x}=y^{\prime}=z=f(x, y, z)$

$$
\therefore \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x}
$$

Therefore, from (1),

$$
\begin{aligned}
& \frac{d z}{d x}-x z-y=0 \\
& \text { ie } \frac{d z}{d x}=y+x z=g(x, y, z)
\end{aligned}
$$

Now, $k_{1}=h f\left(x_{0}, y_{0}, z_{0}\right)$

Now, $l_{1}=h g\left(x_{0}, y_{0}, z_{0}\right)$

$$
\begin{aligned}
& =0.2 \times g(0,1,0) \\
& =0.2(1+0) \\
\therefore l_{1} & =0.2
\end{aligned}
$$

Now, $k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}, z_{0}+\frac{l_{1}}{2}\right)$

$$
\begin{aligned}
\therefore k_{2} & =0.2 f\left(0+\frac{0.2}{2}, 1+\frac{0}{2}, 0+\frac{0.2}{2}\right) \\
& =0.2 f(0.1,1,0.1) \\
& =0.2 \times 0.1 \\
\therefore k_{2} & =0.02
\end{aligned}
$$

Now, $l_{2}=h g\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}, z_{0}+\frac{l_{1}}{2}\right)$

$$
\begin{aligned}
& =0.29\left(0+\frac{0.2}{2}, 1+\frac{0}{2}, 0+\frac{0.2}{2}\right) \\
& =0.29(0.1,1,0.1) \\
& =0.2[1+(0.1)(0.1)] \\
\therefore l_{2} & =0.202
\end{aligned}
$$

Now, $k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}, z_{0}+\frac{l_{2}}{2}\right)$

$$
=0.2 f\left(0+\frac{0.2}{2}, 1+\frac{0.02}{2}, 0+\frac{0.202}{2}\right)
$$

$$
=0.2 f(0.1,1.01,1.101)
$$

$$
=0.2 \times 0.101
$$

$$
\therefore k_{3}=0.0202
$$

Now,

$$
\begin{aligned}
l_{3} & =h g\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}, z_{0}+\frac{l_{2}}{2}\right) \\
& =0.2 g(0.1,1.01,0.101) \\
& =0.2[1.01+(0.1)(0.101)] \\
& =0.2040
\end{aligned}
$$

Now,

$$
\text { ow, } \begin{aligned}
k_{4} & =h f\left(x_{0}+h, y_{0}+k_{3}, z_{0}+l_{3}\right) \\
& =0.2 f(0+0.2,1+0.0202,0+0.2040) \\
\therefore k_{4} & =0.0408
\end{aligned}
$$

Q.No.

Now, $l_{4}=h g\left(x_{0}+h, y_{0}+k_{3}, z_{0}+l_{3}\right)$

$$
\begin{aligned}
& =0.2 \mathrm{~g}(0.2,1.0202,0.2040) \\
& =0.2[1.0202+(0.2)(0.2040)] \\
\therefore l_{4} & =0.2122
\end{aligned}
$$

Now,

$$
\text { ow, } \begin{aligned}
k & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0+2(0.02)+2(0.0202)+0.0408] \\
\therefore k & =0.0202 .
\end{aligned}
$$

Now

$$
\text { w, } \begin{aligned}
L & =\frac{1}{6}\left[l_{1}+2 l_{2}+2 l_{3}+l_{4}\right] \\
& =\frac{1}{6}[0.2+(2)(0.202)+(2)(0.2040)+0.2122] \\
\therefore L & =0.2040
\end{aligned}
$$

Now, $y_{1}=y\left(x_{1}\right)=y(0.2)=y_{0}+k$
ie $y_{1}=1+0.0202$
ie $y_{1}=1.0202$
or $y(0.2)=1.0202$
(b) Let $f\left(x, y, y^{\prime}\right)=y^{2}+\left(y^{\prime}\right)^{2}+2 y e^{x}$

Euler's equation, $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$ becomes,

$$
\left(2 y+2 e^{x}\right)-\frac{d}{d x}\left(2 y^{\prime}\right)=0 \text { or } y+e^{x}-y^{\prime \prime}=0 \text {. }
$$

ie $y^{\prime \prime}-y=e^{x}$ or $\left(D^{2}-1\right) y=e^{x}$ where $D=\frac{d}{d x}$
$A E$ is $m^{2}-1=0 \quad \therefore m= \pm 1$

Hence we can take Euler's equation in the form,

$$
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=\text { Constant }=c
$$

ie $\frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}}-y^{\prime}\left\{\frac{1}{\sqrt{y}} \frac{1}{2 \sqrt{1+y^{\prime 2}}} \cdot 2 y^{\prime}\right\}=c$
ie $\frac{1}{\sqrt{y} \sqrt{1+y^{\prime 2}}}\left\{1+y^{\prime 2}-y^{\prime^{\prime 2}}\right\}=c$
or $\frac{1}{\sqrt{y} \sqrt{1+y^{\prime 2}}}=c$
ie $\sqrt{y} \sqrt{1+y^{\prime 2}}=\frac{1}{c}=\sqrt{a}(s a y)$
By squaring, $y\left(1+y^{\prime 2}\right)=a$ or $y^{\prime^{\prime}}=\frac{a}{y}-1$ or $y^{\prime^{2}}=\frac{a-y}{y}$ ie $\frac{d y}{d x}=\sqrt{\frac{a-y}{y}}$
or $d x=\sqrt{\frac{y}{a-y}} d y$

$$
\therefore \int d x=\int \sqrt{\frac{y}{a-y}} d y
$$

Further, $z^{\prime}=1+z$ will give us the following values.

$$
\begin{aligned}
& z^{\prime}(0)=1+z(0)=1+1=2 \\
& z^{\prime}(0.1)=1+z(0.1)=2.2103 \\
& z^{\prime}(0.2)=1+z(0.2)=2.4427 \\
& z^{\prime}(0.3)=1+z(0.3)=2.699
\end{aligned}
$$

Now we tabulate these values.

x	$x_{0}=0$	$x_{1}=0.1$	$x_{2}=0.2$	$x_{3}=0.3$
y	$y_{0}=1$	$y_{1}=1.1103$	$y_{2}=1.2427$	$y_{3}=1.399$
$y^{\prime}=z$	$z_{0}=1$	$z_{1}=1.2103$	$z_{2}=1.4427$	$z_{3}=1.699$
$y^{\prime \prime}=z^{\prime}$	$z_{0}^{\prime}=2$	$z_{1}^{\prime}=2.2103$	$z_{2}^{\prime}=2.4427$	$z_{3}^{\prime}=2.699$

We first Consider Milne's predictor formulae:

$$
\begin{aligned}
& y_{4}^{(p)}=y_{0}+\frac{4 h}{3}\left(2 z_{1}-z_{2}+2 z_{3}\right) \\
& z_{4}^{(p)}=z_{0}+\frac{4 h}{3}\left(2 z_{1}^{\prime}-z_{2}^{\prime}+2 z_{3}^{\prime}\right)
\end{aligned}
$$

Hence, $y^{(p)}$

$$
\begin{aligned}
z_{4}^{(p)} & =1+\frac{4(0.1)}{3}[2(2.2103)-2.4427+2(2.699)] \\
\therefore y_{4}^{(P)} & =1.5835 \text { and } z_{4}^{(P)}=1.9835 .
\end{aligned}
$$

Next we Consider Milne's corrector formulae:

$$
\begin{aligned}
& y_{4}^{(c)}=y_{2}+\frac{h}{3}\left(z_{2}+4 z_{3}+z_{4}\right) \\
& z_{4}^{(c)}=z_{2}+\frac{h}{3}\left(z_{2}^{\prime}+4 z_{3}^{\prime}+z_{4}^{\prime}\right)
\end{aligned}
$$

We have, $z_{4}^{\prime}=1+z_{4}^{(P)}=1+1.9835=2.9835$.

Hence, $y_{4}^{(c)}=1.2427+\frac{0.1}{3}[1.4427+4(1.699)+1.9835]$

$$
\begin{aligned}
& z_{4}^{(c)}=1.4427+\frac{0.1}{3}[2.4427+4(2 \\
& y_{4}^{(c)}=1.58344 \text { and } z_{4}^{(c)}=1.98344
\end{aligned}
$$

Applying the corrector formula again for y_{4} we obtain $y_{4}^{(c)}=1.583438$.
Thus the required, $y(0.4)=1.5834$
(b) Let $f\left(x, y, y^{\prime}\right)=\frac{\left(y^{\prime}\right)^{2}}{x^{3}}$

Eulers equation, $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$ becomes,

$$
\begin{aligned}
& 0-\frac{d}{d x}\left(\frac{2 y^{\prime}}{x^{3}}\right)=0 \\
& \text { ie } \frac{d}{d x}\left(\frac{2 y^{\prime}}{x^{3}}\right)=0
\end{aligned}
$$

or $\frac{2 y^{\prime}}{x^{3}}=c_{1}$
ie $2 y^{\prime}=c_{1} x^{3}$
or $\frac{d y}{d x}=c_{1} x^{3}$
ie $2 d y=c_{1} x^{3} d x$
ie $2 \int d y=c_{1} \int x^{3} d x$
or $2 y=\frac{c_{1} x^{4}}{4}+c_{2}$
or $y=\frac{x^{4}}{4} c_{1}+c_{2}$

