

TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

		Module -1	Marks	
		Find the Laplace transform of		
Q.01	a	(<i>i</i>) $e^{-3t}sin5t cos3t$ (<i>ii</i>) $\frac{1-e^t}{t}$	06	
		Find the Laplace transform of the square–wave function of period a given by		
	b $f(t) = \begin{cases} 1, & 0 < t < a/2 \\ -1, & a/2 < t < 2 \end{cases}$			
	c	Using the convolution theorem find the inverse Laplace transform of $\frac{1}{(s^2+1)(s^2+9)}$	07	
		OR		
		Using the unit step function, find the Laplace transform of $0 \le t \le \pi$		
Q.02	a	$f(t) = \begin{cases} \cos t, & 0 \le t \le \pi \\ \cos 2t, & \pi \le t \le 2\pi \\ \cos 3t, & t \ge 2\pi \end{cases}$	06	
	b	Find the inverse Laplace transform of $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$	07	
		Solve by using Laplace transform techniques		
	c	$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t \text{ with } x(0) = 2 \text{ and } x'(0) = -1$	07	
		Module-2		
Q. 03	a	Find a Fourier series to represent $f(x) = x^2$ in $-\pi \le x \le \pi$	06	
	b	Obtain the half-range cosine series for $f(x) = x \sin x$ in $(0, \pi)$ and hence show that $\frac{\pi - 2}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots \infty$	07	
	c	The following table gives the variation of periodic current over a period. $t sec$ 0T/6T/3T/22T/35T/6TA amp1.981.301.051.30-0.88-0.251.98Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first harmonic.	07	

OR			
Q.04	a	Find the Fourier series expansion of $f(x) = 2x - x^2$, in (0, 3)	6
		Obtain half-range sine series for	07
		$\left(kx \right) 0 \le x \le \frac{l}{2}$	
	b	$f(x) = \begin{cases} nx, & 0 \le x \le 2 \\ 1 & 1 \end{cases}$	
		$\left(k(l-x), \frac{1}{2} \le x \le l\right)$	
		Expand y as a Fourier series up to the first harmonic if the values of y are given by	
	с	x 0° 30° 60° 90° 120° 150° 180° 210° 240 270 300 330	07
		y 1.80 1.10 0.30 0.16 1.50 1.30 2.16 1.25 1.30 1.52 1.76 2.00	
		Module-3	
		$ x \le 1$	
0 0 T		Find the Fourier transform of $f(x) = \{0, x > 1\}$	0.5
Q. 05	а	Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{2} dx$	06
		50 x	
		Find the Fourier cosine and sine transforms of e^{-ax}	
	b		07
	0	Find the Z-transforms of (i) $(n + 1)^2$ and (ii) $\sin(3n + 5)$	07
	C		07
		OR	
		Find the Fourier transform of $e^{-a^2x^2}$, $a > 0$. Hence deduce that it is self-reciprocal in	
Q. 06	а	respect of Fourier series	06
		a 2 a	
	h	Find the inverse z –transform of $\frac{2z^2+3z}{(z+2)(z-4)}$	07
	U	(2+2)(2-4)	07
	Using z-transformation, solve the difference equation $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$,		
	с	$u_0 = 0$, $u_1 = 1$	07
		Modulo 4	
		Classify the following partial differential equations	
		(i) $u_{xx} + 4u_{xy} + 4u_{xy} - u_x + 2u_y = 0$	
0.07	я	(i) $x^2 u_{xx} + (1 - v^2) u_{yy} = 0, -1 < v < 1$	10
Q. 07	a	(iii) $(1 + x^2)u_{rrr} + (5 + 2x^2)u_{rrt} + (4 + x^2)u_{tt} = 0$	10
		(iv) $y^2 u_{xx} - 2y u_{xy} + u_{yy} - u_y = 8y$	
		Find the values of $u(x, t)$ satisfying the parabolic equation $u_t = 4u_{xx}$ and the boundary	
		conditions $u(0, t) = 0 = u(8, 0)$ and $u(x, 0) = 4x - \frac{x^2}{x}$ at the points	
	b	conditions $u(0,t) = 0 = u(0,0)$ and $u(x,0) = 4x$ 2 at the points	10
		$x = i$: $i = 0, 1, 2,, 8$ and $t = \frac{j}{8}$: $j = 0, 1, 2, 3, 4$.	
		OR	
		Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x^2}$ subject to the conditions $u(x, 0) = \sin \pi x$, $0 \le x \le 1$	
Q. 08	a	u(0,t) = u(1,t) = 0, Carry out computations for two levels, taking	10
		$h = \frac{1}{24}$ and $k = \frac{1}{26}$	
		טנ דנ	

	b	The transverse displacement <i>u</i> of a point at a distance <i>x</i> from one end and at any time <i>t</i> of a vibrating string satisfies the equation $u_{tt} = 25 u_{xx}$, with the boundary conditions $u(x,t) = u(5,t) = 0$ and the initial conditions $u(x,0) = \begin{cases} 20x , & 0 \le x \le 1 \\ 5(5-x), & 1 \le x \le 5 \end{cases}$ and $u_t(x,0) = 0$. Solve this equation numerically up to $t = 5$ taking $h = 1, k = 0.2$.	10
		Module-5	
Q. 09	a	Using Runge –Kutta method of order four, solve $\frac{d^2y}{dx^2} = y + x\frac{dy}{dx}$ for x = 0.2, Given that, $y(0) = 1$, $y'(0) = 0$	06
	b	Find the extremals of the functional $\int_{x_1}^{x_2} [y^2 + (y')^2 + 2ye^x] dx$	07
	c	Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity	07
		OR	
Q. 10	а	Apply Milne's method to solve $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ at $x = 0.4$. given that $y(0) = 1$, $y(0.1) = 1.1103$, $y(0.2) = 1.2427$, $y(0.3) = 1.399$ y'(0) = 1, $y'(0.1) = 1.2103$, $y'(0.2) = 1.4427$, $y'(0.3) = 1.699$	06
	b	Find the extremals of the functional $\int_{x_1}^{x_2} \frac{(y')^2}{x^3} dx$	07
	c	Find the curve on which the functional $\int_0^{\pi/2} [(y')^2 + 12xy] dx$ with $y(0) = 0$ and $y(\pi/2) = 0$ can be extremised	07

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome

Question		Bloom's Taxonomy	Course	Program Outcome	
		Level attached	Outcome		
	(a)	L1	CO 01	PO 01	
Q.1	(b)	L2	CO 01	PO 02	
	(c)	L2	CO 01	PO 02	
	(a)	L2	CO 01	PO 02	
Q.2	(b)	L2	CO 01	PO 02	
	(c)	L2	CO 01	PO 02	
	(a)	L2	CO 02	PO 02	
Q.3	(b)	L2	CO 02	PO 02	
	(c)	L3	CO 02	PO 02	
	(a)	L2	CO 02	PO 02	
Q.4	(b)	L2	CO 02	PO 02	
	(c)	L2	CO 02	PO 02	
	(a)	L2	CO 03	PO 02	
Q.5	(b)	L2	CO 03	PO 02	
	(c)	L2	CO 03	PO 02	
Q.6	(a)	L2	CO 03	PO 02	

	(b)	L2		CO 03	PO 02
	(c)	L3		CO 03	PO 02
07	(a)	L1		CO 04	PO 01
Q.7	(b)	L2		CO 04	PO 02
00	(a)	L2		CO 04	PO 02
Q.0	(b)	L3		CO 04	PO 02
	(a)	L2		CO 05	PO 01
Q.9	(b)	L2		CO 05	PO 02
	(c)	L3		CO 05	PO 02
	(a)	L2		CO 05	PO 01
0.10	(b)	L2		CO 05	PO 02
Q	(c)	L2		CO 05	PO 02
		Low	ver order	thinking skills	
Bloom's	s	Remembering	Underst	tanding	Applying
Taxonomy		(knowledge): L ₁	(Comprehension): L ₂		(Application): L_3
Levels			Higher-o	order thinking skills	S
		Analyzing	Valuatii	ng	Creating
		(Analysis): L ₄	(Evalua	tion): L ₅	(Synthesis): L ₆

Q.No.	Solution and Scheme	Marks
1. (a)	(i) to find: L[e ^{-3t} sin5tcos3t]	
	MkT, sin5tcosst = sin(5t+3t)+sin(5t-3t)	
	2	
	$\int -Sin A \cos B = Sin (A+B) + Sin (A-B)$	
	$-:- \sin 5 t \cos 3 t = \sin 8 t + \sin 2 t$	(JM)
	2	
	Taking Laplace transforms on both sides, we have	
	$L[\sin 5t\cos 3t] = \frac{1}{2} \left\{ L[\sin 8t] + L[\sin 2t] \right\}$	(IM)
	ie $L[sin5tcos3t] = \frac{1}{2} \left\{ \frac{8}{s^2+64} + \frac{2}{s^2+4} \right\}$	(IM)
	WKT, $L[e^{at}f(t)] = f(s-a)$ or $L[e^{-at}f(t)] = f(s+a)$	(IM)
	: $L[e^{-3t}sin5tcos3t] = \frac{1}{2} \left\{ \frac{8}{(s+3)^2+64} + \frac{2}{(s+3)^2+4} \right\}$	(IM) (6M)
(b)	Given: $f(t) = \begin{cases} 1, 0 \le t \le a \\ -1, a \\ \ge \le t \le a \end{cases}$	
	The given function is periodic with period T=a.	
	We have, $L[f(t)] = \frac{1}{1-e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$	(IM)
	$= \frac{1}{1-e^{-as}} \int_{0}^{a-st} f(t) dt$	
	$=\frac{1}{1-e^{-as}}\int_{0}^{a 2}e^{-st}dt + \frac{a}{1-e^{-as}}\int_{-e^{-st}}^{a-st}dt$	(IM)

Q.No. Solution and Scheme Marks
Taking inverse Laplace -bandforms on both sides,

$$L^{-1}\left[\frac{1}{(s^{2}+1)(s^{2}+q)}\right] = L^{-1}\left[\overline{\mp}(s) \cdot \overline{q}(s)\right] - \dots (1)$$
Now, $\overline{\mp}(s) = \frac{1}{s^{2}+1}$ and $\overline{q}(s) = \frac{1}{s^{2}+q}$
ie $f(t) = \sin t$ and $q(t) = \frac{\sin 3t}{3}$
ie $f(t) = \sin t$ and $q(t) = \frac{\sin 3t}{3}$
ie $f(u) = \sin u$ and $q(t-u) = \frac{\sin (3t-3u)}{3}$
By Convolution -theorem, we have

$$\int_{u=0}^{t} f(t) \cdot q(t-u) du = L^{-1}\left[\overline{\mp}(s) \cdot \overline{q}(s)\right] \qquad (1M)$$

$$= \frac{1}{3} \int_{u=0}^{t} \sin u \cdot \sin (3t-3u) \cdot du$$

$$= \frac{1}{3} \int_{u=0}^{t} \cos (u-3t+3u) - \cos (u+3t) - \frac{1}{3} \int_{u=0}^{t} \frac{\cos (u-3t+3u) - \cos (u+3t)}{2} - \frac{1}{3} \int_{u=0}^{t} \frac{\cos (u-3t) - \cos (u+3t)}{2} - \frac{1}{3} - \frac{1}{3} \int_{u=0}^{t} \frac{\cos (u-3t) - \cos (u+3t)}{2} - \frac{1}{3} - \frac{1}{3} \int_{u=0}^{t} \frac{1}{3} - \frac{$$

O.No.	Solution and Scheme	Marks
() DA		
(a	The Fourier series of $f(x)$ in $-\pi \leq x \leq \pi$ is given by:	
	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx - (1)$	
	Given: $f(x) = x^2$	
	$-f(-x) = (-x)^2 = x^2 = f(x)$	
	ie $f(-x) = f(x)$ Hence $f(x)$ is even and therefore $b_n = 0$.	(IM)
	". Equation (1) becomes:	[
	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n x - (2)$	
	Where, $a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$	
	$=\frac{2}{\pi}\int_{0}^{\pi}x^{2}dx$	
	$=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi}$	
	$=\frac{2}{\pi}\left[\frac{\pi^{3}}{3}\right]$	
	$\alpha_0 = \frac{2\pi^2}{3}$	
	ie $\frac{a_0}{2} = \frac{\pi^2}{3}$ (3)	(IM)
	Now, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$	
	$= \frac{2}{\pi} \int_{0}^{\pi} z^{2} \cos nz dz$	π
	$= \frac{2}{\pi} \left[\chi^2 \left(\frac{\sin n\chi}{n} \right) - (2\chi) \left(\frac{-\cos n\chi}{n^2} \right) + (2) \left(\frac{-\sin n\chi}{n^3} \right) \right]$	D
	$=\frac{2}{\pi}\left[\frac{2\pi(-1)^{n}}{n^{2}}\right]$	

9	2.No.	Solution and Scheme	Marks
		$a_n = \frac{4(-1)^n}{n^2}$	
		ie $Q_n = 4\left[\frac{(-1)^n}{n^2}\right] - (3)$	(2M)
		Substituting (3) and (4) in (1), we get	
		$f(x) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$	(IM)
		is the required Fourier series of $f(x) = x^2$ in $-\pi \le x \le \pi$	(6M)
	(6)	The half manage (oring series for f(x) in (0, T) is given by:	
	(0)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx (1)$	(IM)
		Where, $a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$	
		$= \frac{2}{\pi} \int_{0}^{\pi} z \sin z dz$	
		$= \frac{2}{\pi} \left[\chi(-\cos\chi) - (1)(-\sin\chi) \right]_{0}^{\pi}$	
		$=\frac{2}{\pi}\left[-\pi(-1)\right]$	
		$a_0 = 2(1)$	(IM)
		$\frac{1e \ u_0}{2} = 1 \ -(2)$	
		Now, $a_n = \frac{2}{\pi} \int f(x) \cos nx dx$	
		$= \frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos nx dx$	
		$= \frac{2}{\pi} \int_{0}^{\pi} \left\{ \frac{\sin(1+n)x + \sin(1-n)}{2} \right\} dx$	
		$=\frac{1}{\pi}\int_{0}^{\pi} \left\{\sin(1+\pi)x + \sin(1-\pi)x\right\}dx$	

Q.No.	Solution and Scheme	Marks
	Substituting (2), (3) and (4) in (1), we get	
	$f(\pi) = 1 - \frac{\cos \pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1} - 1}{n^2 - 1} \right] \cos n\pi$	(IM)
		(ŦM)
(c)	Given: The following table gives the variation of periodic Current over a period.	
	\pm sec 0 T 6 T 3 T 2 2T 3 5T 6 T A amp 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98	
	We observe that the values of A at t=0 and t=T are the same thence we shall omit the last value.	
	We convert A=f(t) to the period 27 by putting	(IM)
	$\theta = \left(\frac{2\pi + 1}{T}\right)$ so that we have $\theta = 0$ when $t = 0$. The	
	Corresponding values of 0 are rapped	
	180°, 240°, 300°, 360°.	
	The Fourier series upto the most	
	A - a (a conthising)	(IM)
	We prepare the relevant table Considering the values of 'A' and 'O' in $0 \le 0 \le 2\pi$.	
	t A 0° COSO ACOSO SINO ASINO	
	0 1.98 0 1 1.98 0 0	
	$T_{6} = 1.30 = 60 = 0.5 = 0.00 = 0.866 = 0.9093$	(2M)
	$\begin{bmatrix} T_3 & 1.00 & 120 & 0.00 & 0 \\ T_2 & 1.30 & 180 & -1 & -1.30 & 0 & 0 \end{bmatrix}$	
5	$2T_{3} - 0.88$ 240 - 0.5 0.44 - 0.866 0.76208	
	5T 6 - 0.25 300 0.5 - 0.125 - 0.866 0.2165	
	Total 4.5 1012 3001300	

Q.No	Solution and Scheme	Marks
	Now, $a_0 = \frac{2}{N} \sum A = \frac{1}{3} (4.5) = 1.5; \frac{a_0}{2} = 0.75$	
	$a_{1} = \frac{2}{N} \sum_{i} A \cos x = \frac{1}{3} (1.12) = 0.3733$	(IM)
	$b_1 = \frac{2}{N} \sum Asin x = \frac{1}{3} (3.01368) = 1.00456$	
	The required Fourier series upto the first harmonics	
	is given by:	
	$A = 0.75 + (0.373) \cos x + 1.00456 \sin x)$	(IM)
	The direct current part of the variable current is the	(IM)
	Constant term in the Fourier series being 0.75.	
	Amplitude of first harmonic = $\sqrt{a_1^2 + b_1^2} = 1.072$.	(IM)
		(7M)
0		1
y.04		
(u)	Here $(0, 2.1) = (0, 3)$ ie $21 = 3 \text{ or } 1 = 3/2$	(IM)
	The Fourier series of f(x) having period (0,21) is	
	given by:	
	$-f(x) = \frac{\alpha \sigma}{2} + \sum_{n=1}^{\infty} \alpha_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$	
	$ie f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos\left(\frac{2n\pi x}{3}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2n\pi x}{3}\right)$	(ім)
	Where, $a_0 = \frac{1}{l} \int_{0}^{2l} f(x) dx$	
	$= \frac{2}{3} \int_{0}^{3} (2x - x^{2}) dx \left[- : l = 3 \right]_{2}$	

	$\dot{a}_{0} = \frac{2}{3} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{3}$	
	$= \frac{2}{3} \begin{bmatrix} 3 - 2 + \\ -3 \end{bmatrix}$	
	$= \frac{2}{3} \begin{bmatrix} 9-9 \end{bmatrix}$	
	-20 = 0	
	$ie \frac{\alpha v}{2} = 0 - (2)$	(IM)
	Now, $a_n = \frac{1}{l} \int_{0}^{2l} f(x) \cos\left(\frac{\pi\pi x}{l}\right) dx$	
	$=\frac{2}{3}\int_{0}^{3} (2x-x^2)\cos\left(\frac{2\pi\pi x}{3}\right)dx \left[\frac{-1}{2}\right]$	
	$= \frac{2}{3} \left[(2\chi - \chi^2) \left\{ Sin\left(\frac{2\pi\pi\chi}{3}\right) \right\} \left(\frac{3}{2\pi\pi}\right) \right]$	
	$-\left(2-2\varkappa\right)\left\{-\cos\left(\frac{2\eta\pi\varkappa}{3}\right)\right\}\left(\frac{q}{4\eta^{2}\pi^{2}}\right)$	
S. N. S.	$+(-2)\left\{-\sin\left(\frac{2\pi\pi 2}{3}\right)\right\}\left(\frac{27}{8\pi^{3}\pi^{3}}\right)\right]_{0}^{3}$	
	$=\frac{2}{3}\left[\left(2-6\right)\left\{\cos 2\pi\pi\right\}\left(\frac{q}{4\pi^{2}\pi^{2}}\right)-\left(2-0\right)\left(1\right)\left(\frac{q}{4\pi^{2}\pi^{2}}\right)\right]$	
	$= \frac{2}{3} \left[\frac{9}{4n^{2}\pi^{2}} \left\{ -4-2 \right\} \right]$	
	$= -\frac{2}{3} \left[\frac{q \cdot 6}{4 n^2 \pi^2} \right]$	

Solution and Scheme

Q.No.

 $- d_n = -\frac{q}{n^2 \pi^2} - - (3)$

(IM)

Marks

Q.No.	Solution and Scheme	Marks
(c)	Given!	
	x 0° 30° 60° 90° 120° 150° 180° 210° 240° 2≠0° 300° 330°	
	y 1.80 1.10 0.30 0.16 1.50 1.30 2.16 1.25 1.30 1.52 1.76 2.0	
	Here the interval of 'z' is 0 ≤ z ≤ 27. Period of y is 27	
	We are required to find ao, a, b. The Corresponding	
	formulae are:	
	$a_{0} = \frac{2}{N} \sum_{N} y$, $a_{1} = \frac{2}{N} \sum_{N} y \cos x$, $b_{1} = \frac{2}{N} \sum_{N} y \sin x$, $N = 12, \frac{2}{N} = \frac{1}{N}$	(IM)
	2 4 6067 116567	
	0 1.80 1 1.60 0	
2	30° 1.10 0.866 0.9526 0.5 0.55	
	60° 0.30 0.5 0.15 0.866 0.2598	
	90° 0.16 0 0 1 0.16	
	120° 1.50 -0.5 -0.75 0.866 1.299	(2M)
	150° 1.30 -0.866 -1.1258 0.5 0.65	
	$180^{\circ} 2.16 -1 -2.16 0 0$	
	210° 1.25 -0.866 -1.0825 -0.5 -0.625	
	240° 1.30 -0.5 -0.65 -0.866 -1.1258	
	270° 1.52 0 0 -1 -1.52	
	300° 1.76 0,5 0.88 -0.866 -1.52416	
	330° 2.00 0.866 1.732 -0.5 -1	
	Total 16.15 -0.2537 -2.87616	
	Now, $a_0 = \frac{1}{6}\sum_{i=0}^{i} \sum_{j=0}^{i} (16.15) = 2.6917; \frac{a_0}{2} = 1.34585$	(IM)
	$a_1 = \frac{1}{6} \sum_{i=0}^{i} y \cos x = \frac{1}{6} (-0.2537) = -0.0423$	(IM)
	$b_1 = \frac{1}{6} \sum_{i=0}^{n} y \sin x = \frac{1}{6} \left(-2.87616 \right) = -0.47936$	(IM)
	The Fourier series up to the first harmonics is given by	
	$y = f(x) = \frac{a_0}{2} + (a_1 \cos x + b_1 \sin x)$	(IM)
	Thus, y=1.34585-0.04230052-0.479365inz	(7M)

O.No.	Solution and Scheme	Marks
0.05		
(a)	Complex Fourier transform of f(x) is given by:	
	$F(U) = \int f(x) e^{i u x} dx$ $x = -\infty$	(IM)
	ie $F(u) = \int_{1}^{1} 1 \cdot e^{iux} dx$, since $f(x) = \begin{cases} 1 \text{ for } -1 \le x \le 1 \\ 0 \text{ otherwise} \end{cases}$	
	$F(u) = \begin{bmatrix} e^{iux} \\ iu \end{bmatrix}_{x=-1}^{1}$	
	$=\frac{1}{iu}\left[e^{iu}-e^{iu}\right]$	
	$= \frac{1}{iU} \left[\left\{ \cos U + i\sin U \right\} - \left\{ \cos U - i\sin U \right\} \right]$	
	$= \frac{1}{i U} \left(2i \sin U \right)$	
	$F(u) = \frac{2Sinu}{u}$	(IM)
	Next, to evaluate: $\int_{0}^{\infty} \frac{\sin x}{x} dx$	
	We have, $F(u) = \frac{2sinu}{u}$	
	Inverse Fourier transform is: $\frac{1}{2\pi}\int_{-\infty}^{\infty}F(u)e^{iux}dx=f(x)$)
	$ie f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2\sin u}{u} e^{-iux} dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin u}{u} e^{-iux} dx$	(IM)
	Now, let us put $x=0$. Since $x=0$ is the point of Continuity of $f(x)$, the value	(IM)
	of f(x) at x=0 being tuist since to	

Q.No.Solution and SchemeMarksHence,
$$\frac{1}{-\pi} \int_{-\infty}^{\infty} \frac{\sin u}{u} du = 1$$
, since $e^{\circ} = 1$.
ie $\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin u}{u} du = 1$, since $\frac{\sin u}{u}$ is an even function
 $u^{-1} u^{-1}$.(1M)Changing the variable from 'u' to'z', we get
 $\int_{0}^{\infty} \frac{\sin z}{z} dz = \frac{\pi}{2}$
(6M)(1M)(b) Fourier Casine and sine transforms are given by:
 $F_{c}(u) = \int_{0}^{\infty} f(z) \cos uz dz$ and $F_{s}(u) = \int f(z) \sin uz dz$.(1M) $-\cdot F_{c}(u) = \int_{0}^{\infty} \frac{d^{2}}{(\cos uz dz)}$
 $= \left[\frac{e^{-\alpha z}}{(c - \alpha)^{2} + u^{2}} \left(-\alpha \cos uz + u \sin uz \right) \right]_{z=0}^{\infty}$ (1M) $v = \left[\frac{e^{-\alpha z}}{(c - \alpha)^{2} + u^{2}} \left(-a \sin uz - u \cos uz \right) \right]$ (1M) $v = \left[\frac{e^{-\alpha z}}{(c - \alpha)^{2} + u^{2}} \left(-a \sin uz - u \cos uz \right) \right]$ (1M) $v = \left[\frac{e^{-\alpha z}}{(c - \alpha)^{2} + u^{2}} \left(-a \sin uz - u \cos uz \right) \right]$ (1M) $v = \left[\frac{e^{-\alpha z}}{(c - \alpha)^{2} + u^{2}} \left(-a \sin uz - u \cos uz \right) \right]$ (1M)

Q.No.	Solution and Scheme	Marks
	Put $a\left(\frac{x-iu}{2a^2}\right) = t$: $dx = \frac{dt}{a}$ and t'also varies from	(IM)
	$-\infty \pm \infty$.	
	Now, $F(u) = e^{-u^2/4a^2} \int_{-\infty}^{\infty} e^{-t^2} \frac{dt}{a}$ and $We know - that \int_{-\infty}^{\infty} e^{-t^2} \frac{dt}{a} = \sqrt{\pi}$	
	Thus, $F(u) = \sqrt{\pi} e^{-u^2/4a^2}$	(IM)
	Taking $a^2 = 1/2$, we have	
	$F(u) = F[e^{-\chi^{2} _{2}}] = \frac{\sqrt{\pi}}{(1/\sqrt{2})} e^{-u^{2} _{2}} = 2\sqrt{\pi} e^{-u^{2} _{2}}$	(IM)
	It can be seen that the Fourier transform of e	
	is a Constant times e ^{-u/2}	(IM)
	The function e and e are sume	
	Change in variable22/2	
	Hence we conclude that e 'is a self reciprocal under	(c.n)
	Complex Fourier transform.	(6M)
(6)	Let $\overline{U}(z) = \frac{2z^2 + 3z}{(z+2)(z-4)}$	(IM)
		(IM)
	$\frac{\overline{U}(z)}{z} = \frac{2z+3}{(z+2)(z-4)}$	
	Let $27+3 = A + B$ (7+2)(7-4) = 7+2 + 7-4	
	ie $2Z+3 = A(2-4)+B(2+2)$	
	$Put z = -2 \implies -1 = A(-6) \implies A = 1/6$	(IM)
	$Z = 4 \implies 11 = B(6) \implies B = 11 = 6$	(IM)
	이 같은 것이 같이 같이 같이 많이	

Q.No.	Solution and Scheme	Marks
	$B^{2} - 4AC = (4)^{2} - (4 \times 1 \times 4) = 0$	(2M)
	. The equation is parabolic.	
	$(ii) x^2 + (1 + 1^2) + (1 + $	
	Comparing given equation with (2), we get	
	$A = x^2$, $B = 0$, $C = 1 - y^2$	
	$B^{2} - 4AC = 0 - 4(x^{2})(1 - y^{2}) = 4x^{2}(y^{2} - 1)$	
	For all'x' between - 00 and 00, 22 is positive	
	For all 'y' between -1 and 1, y'21	
*.	a° , $B^2 - 4AC < 0$	(am)
	Hence the equation is ell'iptic	(211)
	$(iii)(1+x^2)U_{22} + (5+2x^2)U_{22} + (4+x^2)U_{22} = 0.$	
	Comparing given equation with (2), we get	
	$A = (1+\chi^2), B = (5+\chi^2), C = (4+\chi^2)$	
	$-B^{2}-4AC = (5+2x^{2})^{2} - 4(1+x^{2})(4+x^{2})$	
	$= 25 + 4x^{4} + 20x^{2} - 16 - 4x^{2} - 16x^{2} - 4x^{4}$	
	$-1 \cdot B^2 - 4Ac = 970$	(2M)
	Hence the equation is hyperbolic.	
	,	
	$(iv) y^2 u_{xx} - 2y u_{xy} + U_{yy} - U_y - 8y = 0.$	
	Comparing given equation with (2), we get	
	$A = y^{2}, B = -2y, C = 1$	
	$B^{2} - 4AC = (-2y)^{2} - 4(y^{2})(1) = 0$	
	The equation is parabolic.	(2M)
		(10M)

Q.No.	Solution and Scheme	Marks
(b)	Here, $C^2 = 4$, $h = 1$ and $k = \frac{1}{8}$. Then $x = \frac{C^2 k}{h^2} = \frac{1}{2}$	(M)
	We have Bendre-Schmidt's recurrence relation	
	$U_{i,j+1}^{i} = \frac{1}{2} \left(U_{i-1,j}^{i} + U_{i+1,j}^{i} \right) - (1)$	
	· · · U o, = 0 and UB, j= 0 for all values of j'ie the	
	enteries in the first and last column are	
	Since $U(x,0) = 4x - \frac{x^2}{2}$,	*
	$U_{1,0}^{\circ} = U_{1-\frac{1}{2}}^{\circ}$	
	= 0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5 for $i=0, 1, 2, 3, 4, 5, 6, 7$	(IM)
	at t=0.	
	These are the enteries of the first row.	
	Taking $j=0$ in (1), we have $U_{1,1} = \bot (U_{1-1,0} + U_{1+1,0})$	
	Taking 1=1,2,3,,7 successively, we get	
	$U_{1,1} = \frac{1}{2} (U_{0,0} + U_{2,0}) = \frac{1}{2} (0+6) = 3$	
	$U_{2,1} = \frac{1}{2} \left(U_{1,0} + U_{3,0} \right) = \frac{1}{2} \left(3.5 + 4.5 \right) = 5.5$	(IM)
	$U_{3,1} = \frac{1}{2} (U_{2,0} + U_{4,0}) = \frac{1}{2} (6+8) = \frac{1}{2}$	
	$U_{4,1} = 1.5, U_{5,1} = 1, U_{6,1} = 5.5, U_{1,1} = 3.$	
	These are the enteries in the second row.	
	Putting j=1 in (i), the enteries of the third row are	
	given by!	
	$U_{1,2} = \frac{1}{2} \left(U_{1-1,1}^{*} + U_{1+1,1}^{*} \right)$	(IM)
	Similarly putting j=2,3,4 successively in (1), the	(3M)
	enteries of uning are as given in the following	
	Hence the vuloe	
	table.	

ONO				Solu	tion an	d Sche	me	<u>.</u>			Marks
Q.NO.	0-1	D	t	2	3	4	5	6	7	8	
	0	0	3.5	6	7.5	8	7.5	6	3.5	0	
	1	0	3	5.5	*	1.5	4	5.5	ઝ	0	4
	2	0	2.75	5	6.5	7	6.5	5	2.75	0	(3M)
	3	D	2.5	4.625	6	6.5	6	4.625	2.5	0	84
4	4	0	2.3125	4.25	5.5625	6	5.5625	4.25	2.3125	0	
	5	0	2.125	3.9375	5.125	5.562	5 5.125	3.937	5 2.125	0	16
	Manual and a second				о р ести расприяти и солости и соло						(10 M)
•											
9.08											
(a)	Here	$, C^{2} =$	1, h=1	3, K=	1/36		1	ŧ			
	so th	nat a	$k = kc^2$	1							
		·	h	-=	r		0-0	1,2) (2	,2)	0	1.
	Also,	ULD	=sin (t	$\left(3\right) = \sqrt{3}$	12		0-	(1.2) ()		D	(4M
		(1	- cip (p	*1) [-1						
		L 2,0	-311 [2	-13]=1	2/2		0	13	13	. ~	
	And	all b	oundar	y valu	es dre	e zen	o as	show	ก ำก-	the	
	figur	e.									
	By	Schm	idt's 1	formula	a, we	have					
	0	110	9.LI =	Vile.	• + (1-	200)110	o + VII	• • • •			(IM)
			Ju		7.0	-) - 1		1+1.5			
	Deco	mes	UijH	$= \frac{1}{4}$	Ц:-, ;	+ 2U°,	3+U°;+	ا ژر ۱			(IM)
	For	°i=1,2	-; j=0:								
		t		<u>ı</u> [u _o ,	0+21	1,0+U2	= [0,-	<u> </u> [0+2	$-\left(\frac{\sqrt{3}}{2}\right)+$	$\frac{\sqrt{3}}{2} = 0.$	65 (IM
		U.	$2,1 = \frac{1}{2}$	U1,0+21	12,0403	_=[0,	$\frac{1}{1}\left[\frac{13}{2}\right]$	$-2x\sqrt{3}$	+0]=	0.65	(IM
	For	i=1, 1	: ا= زز	, r			1				(IM
		L	1,2 = -	4 [llo,1	+241,1	+112,1]=0.44	1			(IM)
		Ц	$2_{12} = \frac{1}{4}$	-[41,14	-242,1	+43,1]=0.4	9			(10 M

Q.No.	Solution and Scheme	Marks
(Ь)	Here, $\frac{h}{k} = G = 5$.	
		(,)
	$U_{i,j+1} = U_{i-1,j} + U_{i+1,j} - U_{i,j-1} - (1)$	(IM)
	Which gives a Convergent solution (since KLh)	
	Now since $U(0, t) = U(5, t) = 0$	
	.: Uo, j=0 and U5, j=0 for all values of 'j'.	
	ie the enteries in the first and last Columns are zero.	
	Since $U(x,0) = \begin{cases} 20 \times 0 \le x \le 1 \\ 5(5-x), 1 \le x \le 5 \end{cases}$, $U(i,0) = \begin{cases} 20 i , 0 \le i \le 1 \\ 5(5-i), 1 \le i \le 5 \end{cases}$	
	$^{\circ}$ $U(i,0) = 20, 15, 10, 5$ for $i = 1, 2, 3, 4$,	(IM)
	These are the entries of the first row.	
	Also $U_{t}(x, 0) = 0$ becomes	
	$\frac{U_{i,j+1} - U_{i,j-1}}{2k} = 0 \text{ when } j = 0, \text{ giving } U_{i,1} = U_{i,-1} - (2)$	
	Putting $j=0$ in (1), $U_{1,1}^{\circ} = U_{1-1,0} + U_{1+1,0}^{\circ} - U_{1,-1}^{\circ}$	
	ie $U_{i,1}^{\circ} = U_{i-1,0}^{\circ} + U_{i+1,0}^{\circ} - U_{i,1}^{\circ} \left[-: From(2) \right]$	
	$\underline{Or} \ U_{i,1}^{\circ} = \frac{1}{2} \left(U_{i-1,0}^{\circ} + U_{i+1,0}^{\circ} \right)$	
	Taking i=1,2,3,4 respectively, we obtain	
	$U_{1,1} = \frac{1}{2} (U_{0,0} + U_{2,0}) = \ddagger .5; U_{2,1} = \frac{1}{2} (U_{1,0} + U_{3,0}) = 15;$	(IM)
	$\begin{array}{c} u_{3,1} = \underbrace{-1}_{2} \left(u_{2,0} + u_{4,0} \right) = 10; u_{4,1} = \underbrace{-1}_{2} \left(u_{3,0} + u_{5,0} \right) = 5. \end{array}$	
	These are the entries of the second row.	
	Putting $j = 1$ in (1), $U_{1,2}^{\circ} = U_{1-1,1}^{\circ} + U_{1+1,1}^{\circ} - U_{1,0}^{\circ}$.	
	Taking 1=1,2,3,4 respectively, we obtain	
	$U_{1,2} = U_{0,1} + U_{2,1} - U_{1,0} = 0 + 15 - 20 = -5$	

Q.No.	Solution and Scheme	Marks
	$U_{2,2} = U_{1,1} + U_{3,1} - U_{2,0} = 7.5 + 10 - 15 = 2.5$	
	$U_{3,2} = U_{2,1} + U_{4,1} - U_{3,0} = 15 + 5 - 10 = 10$	(M)
	$u_{4,1} = u_{3,1} + u_{5,1} - u_{4,0} = 10 + 0 - 5 = 5$	
	These are the entries of the third row.	
	Putting $j = 2$ in (1), $U_{i,3} = U_{i-1,2} + U_{i+1,2} - U_{i,1}$	
	Taking i=1,2,3,4 respectively, we obtain	
	$U_{1,3} = U_{0,2} + U_{2,2} - U_{1,1} = 0 + 10 - 15 = -5$	(IN)
	$U_{2,3} = U_{1,2} + U_{3,2} - U_{2,1} = -5 + 10 - 15 = -10$	
	$U_{3,3} = U_{2,2} + U_{4,2} - U_{3,1} = 2.5 + 5 - 10 = -2.5$	
	$U_{4,3} = U_{3,2} + U_{5,2} - U_{4,1} = 10 + 0 - 5 = 5$	
	These are the entries of the fourth row.	
	Now the equation of the vibrating string of length I is	
	$U_{tt} = C U_{xx}.$	
	: Its period of vibration = $\frac{2l}{c} = \frac{2\times 25}{5} = 10 \text{ sec.}$	(IM)
	This shows that we have to compute u(x,t) upto t=5.	
	Putting $j=3$ in (1), $U_{i,4}^{\circ}=U_{i-1,4}^{\circ}+U_{i+1,4}^{\circ}-U_{i,3}^{\circ}$	
	Taking 1=1,2,3,4 respectively, we obtain	
1	$U_{1,4} = U_{0,3} + U_{2,3} - U_{1,2} = 0 + (-10) - (-5) = -10 + 5 = -5$	(IM)
	$U_{2,4} = U_{1,3} + U_{3,3} - U_{2,2} = -5 + 5 - 10 = -10$	
	$U_{3,4} = U_{2,3} + U_{4,3} - U_{3,2} = -10 + 5 - 10 = -15$	
	$u_{4,4} = u_{3,3} + u_{5,4} - u_{4,2} = -2.5 + 0 - 5 = -7.5$	
	These are the entries of the fifth row.	(IM)
	The values of Us, are as shown to and us above] table [The entries of the sixth row are obtained us above]	
	31012345	
	0 0 20 15 10 5 0	(DM)
	1 0 7.5 15 10 5 0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(10 M)

Q.No.	Solution and Scheme	Marks
9.09		
(a)	Given: $\frac{d^2y}{dx^2} = y + x \frac{dy}{dx}$; $y(0) = 1, y'(0) = 0$.	
	$ie \frac{d^2y}{dx^2} - x \frac{dy}{dx} - y = 0; y(0) = 1, y'(0) = 0 - (1)$	
	Here, $x_0 = 0$, $y_0 = 1$, $y_0' = 0$, $x_1 = 0.2$	
	Step length $h = x_1 - x_0 = 0.2 - 0 = 0.2$	
	Put $\frac{dy}{dx} = y' = z = f(x, y, z)$	
	$\frac{d^2 y}{dx^2} = y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{dz}{dx}.$	(IM)
	Therefore, from (1),	
	$\frac{dz}{dx} - xz - y = 0$	
	ie $\frac{dz}{dx} = y + xz = g(x, y, z)$	
	Now, $k_1 = h f(x_0, y_0, z_0)$	(IM)
	= 0.2 P(0, 1, 0)	
	$= 0.2 \times 0$	
	$- K_1 = 0$	
	Now, $l_1 = hg(x_0, y_0, z_0)$	
	$=0.2 \times g(0,1,0)$	
	= 0.2(1+0)	
	$- l_1 = 0.2$	
	Now, $k_2 = hf\left(20 + \frac{h}{2}, 90 + \frac{k_1}{2}, 20 + \frac{l_1}{2}\right)$	(IM)

Q.No.	Solution and Scheme	Marks
	$-k_{2} = 0.2 f\left(\frac{0+0.2}{2}, 1+\frac{0}{2}, 0+\frac{0.2}{2}\right)$	
	= 0.2f(0.1, 1, 0.1)	
	$= 0.2 \times 0.1$	A
	$F_{2} = 0.02$	
	Now, $l_2 = hg\left(20 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2}\right)$	
	$= 0.29 \left(0 + \frac{0.2}{2}, 1 + \frac{0}{2}, 0 + \frac{0.2}{2} \right)$	
	= 0.29(0.1, 1, 0.1)	
	$= 0.2 \left[1 + (0.1) (0.1) \right]$	
	$-l_2 = 0.202$	
	Now, $k_3 = h f \left(\frac{20 + h}{2}, \frac{y_0 + k_2}{2}, \frac{70 + l_2}{2} \right)$	(IM)
	$= 0.2 \neq \left(0 + \frac{0.2}{2}, 1 + \frac{0.02}{2}, 0 + \frac{0.202}{2}\right)$	
	$=0.2 \neq (0.1, 1.01, 1.101)$	
	$= 0.2 \times 0.101$	
	$-1.k_3 = 0.0202$	
	Now, $l_3 = hg\left(20 + \frac{h}{2}, y_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2}\right)$	
	=0.29(0.1, 1.01, 0.101)	
	$= 0.2 \left[1.01 + (0.1) (0.101) \right]$	
	= 0.2040	
	Now, $k_4 = h^2 (x_0 + h, y_0 + k_3, z_0 + d_3)$	
	= 0.2 + (0+0.2, 1+0.0202, 0+0.2040)	
	$ K_4 = 0.0408$	

Q.N	No.	Solution and Scheme	Marks
		Now, ly=hq (xoth, yo+ks, Zo+ls)	
		=0.29(0.2, 1.0202, 0.2040)	
		$= 0.2 \left[1.0202 + (0.2) (0.2040) \right]$	
		-1.24 = 0.2122	
		Now, $k = \frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right]$	(IM)
		$= \frac{1}{6} \left[0 + 2(0.02) + 2(0.0202) + 0.0408 \right]$	
		-k = 0.0202.	
		Now, $L = \frac{1}{6} [l_1 + 2l_2 + 2l_3 + l_4]$	
		$= \frac{1}{6} \left[0.2 + (2)(0.202) + (2)(0.2040) + 0.2122 \right]$	
		L = 0.2040	
		Now, $y_1 = y(x_1) = y(0.2) = y_0 + k$	
		$ie y_1 = 1 + 0.0202$	
		$ie y_1 = 1.0202$	(IM)
		$\frac{0r}{2} y(0.2) = 1.0202$	(6M)
	(Ь)	Let $f(x,y,y') = y^2 + (y')^2 + 2ye^x$	(IM)
		Euler's equation, $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ becomes,	
		$(2y+2e^{x}) - \frac{d}{dx}(2y') = 0 \text{ or } y+e^{x}-y''=0.$	LIM)
		ie $y'' - y = e^{\chi} Dr (D^2 - 1)y = e^{\chi}$ Where $D = \frac{d}{d\chi}$	
		$AE is m^2 - 1 = 0$. $m = \pm 1$	(IM)

Q.No	Solution and Scheme	Marks
	Hence, $CF = y_c = C_1 e^{\chi} + C_2 e^{-\chi}$	(IM)
	$PI = y_{P} = \frac{e^{x}}{D^{2} - 1} = \frac{e^{x}}{0}, \text{ on replaying D by 1.}$	(IM)
	$\frac{y_P = x e^x}{2D} = \frac{x e^x}{2}$	
	We have, y=yc+yp	(IM)
	Thus, $y = c_1 e^2 + c_2 e^{-2} + 2 e^{2}$	(IM)
	2	(IM)
f a		
(c)	$\begin{array}{c} 0(0,0) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	(IM)
	-: $mgy = \lim_{z \to \infty} \left(\frac{ds}{dt}\right)^2 \xrightarrow{\text{or}} \frac{ds}{dt} = \sqrt{2gy}$	(IM)
-	This is the velocity of the particle at the point P(x,y). Hence the time T required by the particle to move from 0 to 9 is given by	
	$T = \int_{0}^{T} dt = \int_{0}^{2} \frac{dt}{dz} dz = \int_{0}^{2} \frac{dt}{ds} \frac{ds}{dz} dz$	
	Using, $\frac{dt}{ds} = \sqrt{2gy}$ and $\frac{ds}{dx} = \sqrt{1+g^2}$ we have,	

Q.No.	Solution and Scheme	Marks
	$T = \int_{0}^{\frac{2}{1}} \frac{1}{\sqrt{2gy}} \sqrt{1+y^{1/2}} dx$	
	$ie T = \frac{1}{\sqrt{2g}} \int_{0}^{2} \frac{\sqrt{1+y^{12}}}{\sqrt{y}} dx$	(1M)
	We need to find y(2) such that 'T' is minimum.	
	Let $f(x,y,y') = \sqrt{1+y'^2}$ which is independent of 'x'.	
	Hence we can take Euler's equation in the form,	
	$f - y' \frac{\partial f}{\partial y'} = Constant = C$	
	$ie \frac{\sqrt{1+y'^{2}}}{\sqrt{y}} - y' \left\{ \frac{1}{\sqrt{y}} \frac{1}{2\sqrt{1+y'^{2}}}, 2y' \right\} = c$	
	$ie - \frac{1}{\sqrt{y}\sqrt{1+y^{12}}} \left\{ 1+y^{12}-y^{12} \right\} = c$	
	$\frac{Dr}{\sqrt{y}\sqrt{1+y^{2}}} = c$	
	ie $\sqrt{y}\sqrt{1+y^2} = \frac{1}{c} = \sqrt{a}(say)$	
	By squaring, $y(1+y^{12}) = a or y^{12} = \frac{a}{y} - 1 or y^{12} = \frac{a-y}{y}$	
	ie $\frac{dy}{dx} = \sqrt{\frac{a-y}{y}}$	2
	$\frac{dx}{dx} = \sqrt{\frac{y}{a-y}} dy$	
	$- \cdot \int dx = \int \sqrt{\frac{y}{a-y}} dy$	~

Q.No.	Solution and Scheme	Marks
	ie $x = \int \sqrt{\frac{y}{a-y}} dy + b$	(IM)
	Put $y = a \sin^2(\theta _2)$ $dy = a \cdot 2 \sin(\theta _2) \cos(\theta _2) \cdot \frac{1}{2}$	
	$ = \int \frac{\sqrt{a} \sin(\theta _2)}{\sqrt{a} \cos(\theta _2)} \cdot a \sin(\theta _2) \cos(\theta _2) d\theta + b $	
	ie $z = a \int \sin^2(\theta z) d\theta + b$	
	ie $x = a \int \frac{1 - \cos \theta}{2} d\theta + b$	
	ie $x = \frac{a}{2}(\theta - \sin \theta) + b$	(IM)
	Also we have when 0=0, y=0 and we must have x=0 also since (0,0) is a point on the curve. This gives b=0.	
	Hence, $\chi = \frac{a}{2}(\theta - \sin\theta)$; $y = a\sin^2\left(\frac{\theta}{2}\right) = \frac{a}{2}(1 - \cos\theta)$	
	Taking, $a _{2}=k$ we have	
	$x = k(\theta - sin\theta), y = k(1 - \cos\theta)$ We have obtained the required equation of the curve	(IM)
	in the parametric torm which is	
	Thus we can say that the path of a particle moving.	(IM)
	in a vertical plane Under the action of j	(7M)
	least time is a cycloia.	
10		
(a)	Putting $y' = \frac{dy}{dx} = z$, we obtain $y'' = \frac{d^2y}{dx^2} = \frac{dz}{dx}$	
	This equation becomes, $\frac{dz}{dx} = 1+z$ or $z'=1+z$.	(IM)

Q.No.			Solution and	Scheme		Marks	
	Further, z'=1+z will give us the following values.						
	Z'(0) = 1 + Z(0) = 1 + 1 = 2						
	Z'(0.1) = 1 + Z(0.1) = 2.2103						
	Z'(0.2) = 1 + Z(0.2) = 2.4427						
	2'(0.3) = 1 + 2(0.3) = 2.699						
	Now we tabulate these values.						
	x	$\lambda_0 = 0$	21=0.1	22=0.2	23=0.3		
	9	yo=1	y,=1.1103	Y2=1.2427	y3=1.399	(M)	
	y'=2	$Z_0 = 1$	21=102103	72=1.4427	23=1.699		
	4'' = 2'	$z_0' = 2$	Z1=2.2103	72=2.4427	$7_3 = 2.699$	_	
	ble firs	$f(P) = y_0 + (P)$ $(P) = Z_0 + .$	$\frac{4h}{3}(2z_{1}-z_{2})$ $\frac{4h}{3}(2z_{1}^{2}-z_{2})$	dictor + 0 m +273), +273)	UIUE .		
	Hence,	$\begin{array}{c} (P) \\ Y 4 = 1 + \frac{U}{2} \\ T 4 = 1 + \frac{U}{2} \\ (P) \\ U_{11} = 1.583 \end{array}$	$\frac{f(0,1)}{3} \left[2 \left(1 \cdot 2 \right) \right]$ $\frac{f(0,1)}{3} \left[2 \left(2 \cdot 2 \right) \right]$ $\frac{f(0,1)}{3} \left[2 \left(2 \cdot 2 \right) \right]$ $\frac{f(0,1)}{3} \left[2 \left(2 \cdot 2 \right) \right]$	$103) - 1.442^{-1}$ $2103) - 2.442^{-1}$ 2) = 1.9835.	++2(1.699) 27+2(2.699)	(IM)	
	Next u	$y_4 = 1.585$ $y_4 = 0.585$ $y_4 = y_2 + 1.585$ (c) $z_4 = z_2 + 1.585$	$\frac{h}{3}(72+472)$ $\frac{h}{3}(72+472)$	rrector for +74) +74)	mulae:	(IM)	
	kle hav	$xe, Z_{4} = 1+$	$-\frac{(P)}{24} = 1 + 1.9$	835 =2.983	5.		

Q.No.	Solution and Scheme	Marks
	Hence, $y_{4}^{(c)} = 1.2427 + \frac{0.1}{3} \left[1.4427 + 4 \left(1.699 \right) + 1.9835 \right]$	
	$Z_{4}^{(c)} = 1.4427 + \frac{0.1}{3} \left[2.4427 + 4 \left(2.699 \right) + 2.9835 \right]$	(IM)
	". $y_{4} = 1.58344$ and $z_{4} = 1.98344$	
	Applying the corrector formula again for y4 we obtain	(IM)
	$y_4 = 1.583438$	· · · · · · · · · · · · · · · · · · ·
	Thus the required, y(0.4)=1.5834	(6M)
(ь)	Let $f(x, y, y') = \frac{(y')^2}{x^3}$	(IM)
	Euler's equation, $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ becomes,	
	$0 - \frac{d}{dx} \left(\frac{2y'}{x^3}\right) = 0$	
	$ie \frac{d}{dz} \left(\frac{2y'}{z^3} \right) = 0$	(IM)
	$\frac{\text{or}}{2^3} = c_1$	5.0
	ie $2y' = C_1 z^3$	
	$\frac{0r}{dx} = \frac{2dy}{dx} = C_1 x^3$	
	ie $2dy = C_1 x^3 dx$	(IM)
	$ie 2\int dy = C_1 \int x^3 dx$	
	$\frac{0r}{2y} = \frac{c_1 x^4}{4} + c_2$	(2M)
	$\underline{or} y = \frac{2^4}{C_1 + C_2}$	(2M)
	4	(7M)

Q.No.	Solution and Scheme	Marks
(c)	Let $f(x,y,y') = (y')^2 + 12xy$	(IM)
	Euler's equation, $\frac{\partial f}{\partial y} - \frac{d}{\partial x} \left(\frac{\partial f}{\partial y'} \right) = 0$ becomes:	(IM)
	$12\varkappa - \frac{d}{d\varkappa}(2\gamma') = 0$	(IM)
	$ie 6x - \frac{d}{dx}(y') = 0$	
	0r 62 - y'' = 0	
	ie $y'' = 6x$	
	ie $\int y'' dx = 6 \int x$	
	ie $y' = \frac{6x^2}{2} + C_1$	
	ie $y^1 = 3x^2 + c_1$	
	$ie \int y' dx = 3 \int z' dx + \int c_i dx$	
	or $y = x^3 + c_1 x + c_2$	(IM)
	By data, $y(0) = 0$ and $y\left(\frac{\pi}{2}\right) = 0$	(IM)
	$- 0 = 0 + 0 + C_2$ and $0 = \left(\frac{\pi}{2}\right)^3 + C_1\left(\frac{\pi}{2}\right) + 0$	
	ie $C_{2}=0$ ie $0 = \frac{T^{3}}{8} + \frac{TC_{1}}{2}$	
	$\frac{0r}{2} \frac{\pi C_1}{2} = -\frac{\pi^3}{8}$	
	$ie C_1 = -\frac{\pi^2}{1}$	(IM)
	Therefore, $y = x^3 T^2 x$	(IM)
	4	(7M)
	lata 21.12.2022 Muy	
	[Dr. LATA LAMANI] Dr. Meenal Kaliwal KLS VDIT, HALIVAL	
	Department of Mathematics	